Table of physical constants

Table of universal constants

QuantitySymbolValueRelative Standard Uncertainty
characteristic impedance of vacuumZ_0 = \mu_0 c \,376.730 313 461... Ωdefined
electric constant (permittivity of free space)\epsilon_0 = 1 / ( \mu_0 c^2 )\,8.854 187 817... × 10-12F·m-1defined
magnetic constant (permeability of free space) \mu_0 \,4π × 10-7 N·A-2 = 1.2566 370 614... × 10-6 N·A-2defined
Newtonian constant of gravitationG \,6.6742(10) × 10-11m3·kg-1·s-21.5 × 10-4
Planck's constanth \,6.626 0693(11) × 10-34 J·s1.7 × 10-7
Dirac's constant\hbar = h / (2 \pi)1.054 571 68(18) × 10-34 J·s1.7 × 10-7
speed of light in vacuumc \,299 792 458 m·s-1defined

Table of electromagnetic constants

QuantitySymbolValue1 (SI units)Relative Standard Uncertainty
Bohr magneton\mu_B = e \hbar / 2 m_e927.400 949(80) × 10-26 J·T-18.6 × 10-8
conductance quantumG_0 = 2 e^2 / h \,7.748 091 733(26) × 10-5 S3.3 × 10-9
Coulomb's constant\kappa = 1 / 4\pi\epsilon_0 \,8.987 742 438 × 109 N·m2C-2defined
elementary chargee
\,1.602 176 53(14) × 10-19 C8.5 × 10-8
Josephson constantK_J = 2 e / h \,483 597.879(41) × 109 Hz· V-18.5 × 10-8
magnetic flux quantum\phi_0 = h / 2 e \,2.067 833 72(18) × 10-15 Wb8.5 × 10-8
nuclear magneton\mu_N = e \hbar / 2 m_p5.050 783 43(43) × 10-27 J·T-18.6 × 10-8
resistance quantumR_0 = h / 2 e^2 \,12 906.403 725(43) Ω3.3 × 10-9
von Klitzing constantR_K = h / e^2 \,25 812.807 449(86) Ω3.3 × 10-9

Table of atomic and nuclear constants

QuantitySymbolValue1 (SI units)Relative Standard Uncertainty
Bohr radiusa_0 = \alpha / 4 \pi R_\infin \,0.529 177 2108(18) × 10-10 m3.3 × 10-9
Fermi coupling constantG_F / (\hbar c)^31.166 39(1) × 10-5 GeV-28.6 × 10-6
fine-structure constant\alpha = \mu_0 e^2 c / (2 h) = e^2 / (4 \pi \epsilon_0 \hbar c) \,7.297 352 568(24) × 10-33.3 × 10-9
Hartree energyE_h = 2 R_\infin h c \,4.359 744 17(75) × 10-18 J1.7 × 10-7
quantum of circulationh / 2 m_e \,3.636 947 550(24) × 10-4 m2 s-16.7 × 10-9
Rydberg constantR_\infin = \alpha^2 m_e c / 2 h \,10 973 731.568 525(73) m-16.6 × 10-12
Thomson cross section(8 \pi / 3)r_e^20.665 245 873(13) × 10-28 m22.0 × 10-8
Weinberg angle|weak mixing angle\sin^2 \theta_W = 1 - (m_W / m_Z)^2 \,0.222 15(76) 3.4 × 10-3

Table of physico-chemical constants

QuantitySymbolValue1 (SI units)Relative Standard Uncertainty
atomic mass constant (unified atomic mass unit)m_u = 1 \ u \,1.660 538 86(28) × 10-27 kg1.7 × 10-7
Avogadro's numberN_A, L \,6.022 1415(10) × 10231.7 × 10-7
Boltzmann constantk = R / N_A \,1.380 6505(24) × 10-23 J·K-11.8 × 10-6
Faraday constantF = N_A e \,96 485.3383(83)C·mol-18.6 × 10-8
first radiation constant c_1 = 2 \pi h c^2 \,3.741 771 38(64) × 10-16 W·m21.7 × 10-7
for spectral radiancec_{1L} \,1.191 042 82(20) × 10-16 W · m2 sr-11.7 × 10-7
Loschmidt constantat T=273.15 K and p=101.325 kPan_0 = N_A / V_m \,2.686 7773(47) × 1025 m-31.8 × 10-6
gas constantR \,8.314 472(15) J·K-1·mol-11.7 × 10-6
molar Planck constantN_A h \,3.990 312 716(27) × 10-10 J · s · mol-16.7 × 10-9
molar volume of an ideal gasat T=273.15 K and p=100 kPaV_m = R T / p \,22.710 981(40) × 10-3 m3 ·mol-11.7 × 10-6
at T=273.15 K and p=101.325 kPa22.413 996(39) × 10-3 m3 ·mol-11.7 × 10-6
Sackur-Tetrode constantat T=1 K and p=100 kPaS_0 / R = \frac{5}{2}
 + \ln\left[ (2\pi m_u k T / h^2)^{3/2} k T / p \right]
-1.151 7047(44)3.8 × 10-6
at T=1 K and p=101.325 kPa-1.164 8677(44)3.8 × 10-6
second radiation constantc_2 = h c / k \,1.438 7752(25) × 10-2 m·K1.7 × 10-6
Stefan-Boltzmann constant\sigma = (\pi^2 / 60) k^4 / \hbar^3 c^2 5.670 400(40) × 10-8 W·m-2·K-47.0 × 10-6
Wien displacement law constantb = (h c / k) /   \, 4.965 114 231...2.897 7685(51) × 10-3 m · K1.7 × 10-6

Table of adopted values

QuantitySymbolValue (SI units)Relative Standard Uncertainty
conventional value of Josephson constant2K_{J-90} \,483 597.9 × 109 Hz · V-1defined
conventional value of von Klitzing constant3R_{K-90} \,25 812.807 Ωdefined
molar massconstantM_u = M(\,^{12}\mbox{C}) / 121 × 10-3 kg · mol-1defined
of carbon-12M(\,^{12}\mbox{C}) = N_A m(\,^{12}\mbox{C})12 × 10-3 kg · mol1defined
standard acceleration of gravity (free fall on Earth)g_n \,\!9.806 65 m·s-2defined
standard atmosphere \mbox{atm} \,101 325 Padefined

Notes

1The values are given in the so-called concise form; the number in brackets is the standard uncertainty, which is the value multiplied by the relative standard uncertainty.
2This is the value adopted internationally for realizing representations of the volt using the Josephson effect.
3This is the value adopted internationally for realizing representations of the ohm using the quantum Hall effect.

See also

This article is issued from Wikiversity - version of the Thursday, April 23, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.