Radiation astronomy/Beta particles/Quiz

< Radiation astronomy < Beta particles
Beta particles are produced by X-rays passing through air. Credit: Unknown.

Beta-particles astronomy is a lecture and an article from the astronomy department that is under development for possible inclusion in the course on the principles of radiation astronomy.

You are free to take this quiz based on beta-particles astronomy at any time.

To improve your score, read and study the lecture, the links contained within, listed under See also, and in the astronomy resources and course templates. This should give you adequate background to get 100 %.

As a "learning by doing" resource, this quiz helps you to assess your knowledge and understanding of the information, and it is a quiz you may take over and over as a learning resource to improve your knowledge, understanding, test-taking skills, and your score.

A suggestion is to have the lecture available in a separate window.

To master the information and use only your memory while taking the quiz, try rewriting the information from more familiar points of view, or be creative with association.

Enjoy learning by doing!

Quiz

Point added for a correct answer:   
Points for a wrong answer:
Ignore the questions' coefficients:

1. True or False, Van Allen radiation belt electrons are constantly removed by collisions with atmospheric neutrals, losses to the magnetopause, and outward radial diffusion.

TRUE
FALSE

2. Yes or No, Beta particles (electrons) are more penetrating than alpha particles, but still can be absorbed by a few millimeters of aluminum.

Yes
No

3. Which types of radiation astronomy directly observe the rocky-object surface of Venus?

meteor astronomy
cosmic-ray astronomy
neutron astronomy
proton astronomy
beta-ray astronomy
neutrino astronomy
gamma-ray astronomy
X-ray astronomy
ultraviolet astronomy
visual astronomy
infrared astronomy
submillimeter astronomy
radio astronomy
radar astronomy
microwave astronomy
superluminal astronomy

4. Yes or No, Beta particles are high-energy, high-speed electrons or positrons emitted by certain types of radioactive nuclei.

Yes
No

5. When the Earth is viewed from space using X-ray astronomy what characteristic is readily observed?

the magnetic north pole
the Hudson Bay meteorite crater
the South Atlantic Anomaly
the Bermuda Triangle
solar positron events
electrons striking the ionosphere

6. True or False, Electrons in the Earth's magnetosphere are energized by neutral particles from the Sun.

TRUE
FALSE

7. Complete the text:

Match up the item letter with each of the possibilities below:
Meteors - A
Cosmic rays - B
Neutrons - C
Protons - D
Electrons - E
Positrons - F
Gamma rays - G
Superluminals - H
X-ray jets
the index of refraction is often greater than 1 just below a resonance frequency .
iron, nickel, cobalt, and traces of iridium .
Sagittarius X-1 .
escape from a typical hard low-mass X-ray binary .
collisions with argon atoms .
X-rays are emitted as they slow down .
Henry Moseley using X-ray spectra .

8. Yes or No, Positron astronomy is 30 years old but remains in its infancy.

Yes
No

9. What are some of the characteristics of Jovian electrons?

hard spectrum
Jovian electrons near Earth are on their way to the Sun
an energy power law
flux increases with 27 day periodicities
at 1 AU, flux decreases exhibit a short-term modulation of 13 minutes
come in mutable varieties

10. Yes or No, A clumpiness in the galactic halo is through a spatially continuous elevation in the density of dark matter, rather than the more realistic discrete distribution of clumps.

Yes
No

Your score is 0 / 0

Research

Hypothesis:

  1. The radiation astronomy of beta particles (electrons and positrons as a group) may provide insight into fusion reactions above the Sun's photosphere.

Control groups

This is an image of a Lewis rat. Credit: Charles River Laboratories.

The findings demonstrate a statistically systematic change from the status quo or the control group.

“In the design of experiments, treatments [or special properties or characteristics] are applied to [or observed in] experimental units in the treatment group(s).[1] In comparative experiments, members of the complementary group, the control group, receive either no treatment or a standard treatment.[2]"[3]

Proof of concept

Def. a “short and/or incomplete realization of a certain method or idea to demonstrate its feasibility"[4] is called a proof of concept.

Def. evidence that demonstrates that a concept is possible is called proof of concept.

The proof-of-concept structure consists of

  1. background,
  2. procedures,
  3. findings, and
  4. interpretation.[5]

See also

References

  1. Klaus Hinkelmann, Oscar Kempthorne (2008). Design and Analysis of Experiments, Volume I: Introduction to Experimental Design (2nd ed.). Wiley. ISBN 978-0-471-72756-9. http://books.google.com/?id=T3wWj2kVYZgC&printsec=frontcover.
  2. R. A. Bailey (2008). Design of comparative experiments. Cambridge University Press. ISBN 978-0-521-68357-9. http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521683579.
  3. "Treatment and control groups, In: Wikipedia". San Francisco, California: Wikimedia Foundation, Inc. May 18, 2012. Retrieved 2012-05-31.
  4. "proof of concept, In: Wiktionary". San Francisco, California: Wikimedia Foundation, Inc. November 10, 2012. Retrieved 2013-01-13.
  5. Ginger Lehrman and Ian B Hogue, Sarah Palmer, Cheryl Jennings, Celsa A Spina, Ann Wiegand, Alan L Landay, Robert W Coombs, Douglas D Richman, John W Mellors, John M Coffin, Ronald J Bosch, David M Margolis (August 13, 2005). "Depletion of latent HIV-1 infection in vivo: a proof-of-concept study". Lancet 366 (9485): 549-55. doi:10.1016/S0140-6736(05)67098-5. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1894952/. Retrieved 2012-05-09.

External links

This is a research project at http://en.wikiversity.org

Development status: this resource is experimental in nature.
Educational level: this is a research resource.
Resource type: this resource is a quiz.
Subject classification: this is an astronomy resource.
This article is issued from Wikiversity - version of the Monday, February 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.