Physics equations/Collection of equations

< Physics equations

Organization: These equations are under reorganization:

Part II equations waiting to be converted into templates

Math

circumference, area, volume, elements

Circumference and area of circle: C_\odot = \,2\pi r;   A_\odot = \,\pi r^2

Area and volume of sphere: A = 4\pi r^2;   V = \frac{4}{3}\pi r^3

dA = r\mathrm{d}r\,\mathrm{d}\theta

dA = r^2 \sin\theta\, \rm d\theta\, \rm d\phi

\mathrm{d}V=r^2\sin\theta\,\mathrm{d}r\,\mathrm{d}\theta\,\mathrm{d}\varphi

Trigonometry

\sin A=\frac{\textrm{opposite}}{\textrm{hypotenuse}}=\frac{a}{\,c\,}\,.

\cos A=\frac{\textrm{adjacent}}{\textrm{hypotenuse}}=\frac{b}{\,c\,}\,.

\tan A=\frac{\textrm{opposite}}{\textrm{adjacent}}=\frac{a}{\,b\,}=\frac{\sin A}{\cos A}\,.

Vector dot product

\vec{A}\cdot \vec{B} = A_xB_x+A_yB_y+A_zB_z = AB\cos\theta

A=\sqrt{\vec{A}\cdot \vec{A}}=\sqrt{A_x^2+A_y^2+A_z^2}

\hat \mathbf i\cdot \hat \mathbf i = \hat \mathbf j\cdot \hat \mathbf j =\hat \mathbf k\cdot \hat \mathbf k =1

\hat \mathbf j\cdot \hat \mathbf k = \hat \mathbf k\cdot \hat \mathbf i =\hat \mathbf j\cdot \hat \mathbf k =0


Electromagnetism

from https://en.wikiversity.org/w/index.php?title=Electromagnetism_Formulae&oldid=1121007 https://en.wikiversity.org/w/index.php?title=Maxwell%27s_Equations&oldid=790747

Before Maxwell's Equations

Electric field and voltage (or potential):    V(\vec b) - V(\vec a)=-\int_\vec a^\vec b \vec{E} \cdot \mathrm{d}\vec{l} = \phi(\vec b) - \phi(\vec a)

Electric potential due to point charges: \phi(\vec r) = \frac{1}{4\pi\epsilon_0}\frac{Q}{r} \rightarrow \frac{1}{4\pi\epsilon_0} \sum \frac{q_j}{r_j}\rightarrow
\frac{1}{4\pi\epsilon_0} \int \frac{\rho \mathrm{d}{V}}{r}\rightarrow\frac{1}{4\pi\epsilon_0} \int \frac{\mathrm{d}\rho}{r}


Magnetic field:  \vec{B} = \frac{\mu_0}{4\pi} \int_C \frac{I \left ( \mathrm{d} \vec{\ell} \times \hat{r} \right )}{\left | \vec{r} \,\right |^2}

Maxwell's equations

Gauss' Law relating electric field to charge: \oint_S  \vec{E} \cdot \mathrm{d}\vec{A} = \frac{1}{\epsilon_0} Q_{enc}

\nabla \cdot \vec{B} = 0

\nabla \times \vec{E} = -\frac{\partial \vec{B}} {\partial t}

\nabla \times \vec{B} = \mu_0\ \vec{J} + \frac{1}{c^2} \frac{\partial \vec{E}} {\partial t}

\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}} {\partial t}

\nabla \cdot \vec{D} = \rho

to discard

\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}

Maxwell's equations integral form

\oint_S  \vec{E} \cdot \mathrm{d}\vec{A} = \frac{1}{\epsilon_0} Q_{enc}


\oint_S \vec{B} \cdot \mathrm{d}\vec{A} = 0

\oint_C \vec{E} \cdot \mathrm{d}\vec{\ell}  = -  \int_S \frac{\partial\vec{B}}{\partial t} \cdot \mathrm{d} \vec{A}


\oint_C \vec{B} \cdot \mathrm{d}\vec{\ell} = \mu \int_S \vec{J} \cdot \mathrm{d} \vec{A} +\frac{1}{c^2} \int_S \frac{\partial\vec{D}}{\partial t} \cdot \mathrm{d} \vec{A}

\oint_S  \vec{D} \cdot \mathrm{d}\vec{A} = \int_V \rho\, \mathrm{d}V

\oint_C \vec{H} \cdot \mathrm{d}\vec{\ell} = \int_S \vec{J} \cdot \mathrm{d} \vec{A} +\int_S \frac{\partial\vec{D}}{\partial t} \cdot \mathrm{d} \vec{A}

permittivity and magnetic permeability

\vec{B} = \mu\vec{H} =  \mu_0 \left ( \vec{H} + \vec{M} \right )

\vec{D} = \epsilon \vec{E} = \epsilon_0 \vec{E} + \vec{P}

\vec{D} = \epsilon \vec{E}

\vec{H} = \vec{B} / \mu

Force equations

\vec{F}=q_e\left(\vec{E}+\vec{v}\times\vec{B}\right)

 \vec{B} = \frac{\mu_0}{4\pi}\int_C \frac{I d\vec{\ell} \times \hat r}{|r|^2}

Current and circuits

https://en.wikibooks.org/w/index.php?title=Electronics/Formulas&oldid=2348180

\vec J = nqv= n_q \,q\,  \vec v_\text{d}

I =  JA = \vec J\cdot\vec A

\Delta U = q\,V

I = \frac{\rm\,dQ}{\rm dt}

P = \frac{\rm dU}{\rm dt}=I\,V = I^2\,R = \frac{V^2}{R}

 V = I\,R

 \vec E\cdot \,\Delta\vec\ell  = \Delta V

Q = CV

U = \frac{1}{2}Q\,V =  \frac{1}{2}CV^2 =\frac{Q^2}{2C}

resistivity

R =\rho\frac{L}{A}

\alpha =\frac{\rho-\rho_0}{\rho_0}\frac{1}{T-T0}

\frac{\Delta\rho}{\rho}=\alpha\Delta T  where  \Delta\rho=\rho-\rho_0;\quad\Delta T=T-T_0\quad

SI units

See https://en.wikipedia.org/w/index.php?title=SI_base_unit&oldid=579303285

SI units

7 Base units (https://en.wikipedia.org/w/index.php?title=International_System_of_Units&oldid=584747081)

  1. metre m length
  2. kilogram kg mass
  3. second s time
  4. ampere A electric current
  5. kelvin K thermodynamic temperature (0°C = 273.15 K)
  6. Mole molamount of substance (6.02214×1023)
  7. candela cd luminous intensity (typically 18 mW)

Derived units


Advanced Physical Constants

speed of light c \, =2998×108m·s−1


Planck constant=h \, =6.626 × 10−34 J·s

reduced Planck constant= \hbar = h / (2 \pi)= 1.0546 × 10−34 J·s


more constants that need sorting:

Atomic mass constant =m_{\mathrm{u}} = 1\,\mathrm{u} \, =1.660 538 921(73) × 10−27 kg

Avogadro's number =N_{\mathrm{A}}, L \, =6.022 141 29(27) × 1023 mol−1 (number of atoms in a mole)

Boltzmann constant =k = k_{\mathrm{B}} = R / N_{\mathrm{A}} \, =1.381 × 10−23 J·K−1 (converts Kelvins to Joules)


gas constant =R \, =8.31446 J·K−1·mol−1 (converts Kelvins to Joules per mole)


Stefan–Boltzmann constant =\sigma = \pi^2 k^4 / 60 \hbar^3 c^2 =5.670 373(21) × 10−8 W·m−2·K−4 (black body power per unit area is \sigma T^4

Wien displacement law constant (needs to be better defined in terms of maximum lambda and temperature) b = h c k^{-1} / \, 4.965 114 231... =2.897 7721(26) × 10−3 m·K


References

    This article is issued from Wikiversity - version of the Saturday, January 30, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.