Physics equations/18-Electric charge and field/Q:lineChargesCALCULUS/Quizbank

1. A line of charge density λ situated on the y axis extends from y = -3 to y = 2. What is the y component of the electric field at the point (3, 7)?
Answer (assuming \mathcal B > \mathcal A)  is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}, where \mathcal B=

−7
−3
−3
3
2

2. A line of charge density λ situated on the y axis extends from y = -3 to y = 2. What is the y component of the electric field at the point (3, 7)?
Answer (assuming \mathcal B > \mathcal A)  is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}, where \mathcal C=

3−s
3
s−7
7−s
s−3

3. A line of charge density λ situated on the y axis extends from y = -3 to y = 2. What is the y component of the electric field at the point (3, 7)?
Answer (assuming \mathcal B > \mathcal A)  is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}, where\mathcal F=

2
3
3/2
1/2

4. A line of charge density λ situated on the y axis extends from y = 2 to y = 7. What is the y component of the electric field at the point (2, 9)?
Answer (assuming \mathcal B > \mathcal A)  is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}, where \mathcal C=:

2
s − 2
2 − s
s − 9
9 − s

5. A line of charge density λ situated on the y axis extends from y = 2 to y = 7. What is the y component of the electric field at the point (2, 9)?
Answer (assuming \mathcal B > \mathcal A)  is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}, where \mathcal D^2 + \mathcal E^2=:

92 + (7-s)2
92 + (2-s)2
72 + (2-s)2
22 + (7-s)2
22 + (9-s)2

6. A line of charge density λ situated on the x axis extends from x = 4 to x = 8. What is the y component of the electric field at the point (8, 4)?
Answer (assuming \mathcal B > \mathcal A)  is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}, where \mathcal A=:

1/2
4
2
8

7. A line of charge density λ situated on the x axis extends from x = 4 to x = 8. What is the y component of the electric field at the point (8, 4)?
Answer (assuming \mathcal B > \mathcal A)  is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}, where \mathcal C=:

s−8
8−s
s−4
4−s
4

8. A line of charge density λ situated on the x axis extends from x = 4 to x = 8. What is the x component of the electric field at the point (8, 4)?
Answer (assuming \mathcal B > \mathcal A)  is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}, where \mathcal C=:

s−8
8−s
s−4
4−s
4

9. A line of charge density λ situated on the y axis extends from y = 4 to y = 6. What is the x component of the electric field at the point (5, 1)?
Answer (assuming \mathcal B > \mathcal A)  is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}, where \mathcal C=:

5
s−4
5−s
1−s
s−1

10. A line of charge density λ situated on the y axis extends from y = 4 to y = 6. What is the y component of the electric field at the point (5, 1)?
Answer (assuming \mathcal B > \mathcal A)  is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}, where \mathcal C=:

5
s−4
5−s
1−s
s−1

11. A line of charge density λ situated on the y axis extends from y = 4 to y = 6. What is the y component of the electric field at the point (5, 1)?
Answer (assuming \mathcal B > \mathcal A)  is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}, where \mathcal F=:

1/2
2/3
2
3/2
3

12. A line of charge density λ situated on the x axis extends from x = 3 to x = 7. What is the x component of the electric field at the point (7, 8)?
Answer (assuming \mathcal B > \mathcal A)  is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}, where \mathcal C=:

s−3
3−s
8
s−7
7−s

13. A line of charge density λ situated on the x axis extends from x = 3 to x = 7. What is the x component of the electric field at the point (7, 8)?
Answer (assuming \mathcal B > \mathcal A)  is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}, where \mathcal D^2 + \mathcal E^2=:

72 + (8−s)2
72 + 82
(7-s)2 + 82
72 + (3−s)2
32 + 82

Your score is 0 / 0
This article is issued from Wikiversity - version of the Thursday, June 11, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.