Physics equations/10-Rotational Motion and Angular Momentum/Q:dynamics/Testbank
Study: http://en.wikiversity.org/wiki/Physics_equations/Sheet/All_chapters
a10rotationalMotionAngMom_dynamics_v1
copies
===2=== {<!--a10rotationalMotionAngMom_dynamics_1-->A car with a tire radius of 0.26 m accelerates from 0 to 27 m/s in 9.5 seconds. What is the angular acceleration of the wheel?} +a) 1.09 x 10<sup>1</sup> m -b) 1.32 x 10<sup>1</sup> m -c) 1.6 x 10<sup>1</sup> m -d) 1.94 x 10<sup>1</sup> m -e) 2.36 x 10<sup>1</sup> m ===3=== {<!--a10rotationalMotionAngMom_dynamics_1-->A car with a tire radius of 0.35 m accelerates from 0 to 32 m/s in 8.8 seconds. What is the angular acceleration of the wheel?} -a) 5.84 x 10<sup>0</sup> m -b) 7.08 x 10<sup>0</sup> m -c) 8.58 x 10<sup>0</sup> m +d) 1.04 x 10<sup>1</sup> m -e) 1.26 x 10<sup>1</sup> m ===4=== {<!--a10rotationalMotionAngMom_dynamics_1-->A car with a tire radius of 0.34 m accelerates from 0 to 25 m/s in 9.2 seconds. What is the angular acceleration of the wheel?} -a) 5.45 x 10<sup>0</sup> m -b) 6.6 x 10<sup>0</sup> m +c) 7.99 x 10<sup>0</sup> m -d) 9.68 x 10<sup>0</sup> m -e) 1.17 x 10<sup>1</sup> m ===5=== {<!--a10rotationalMotionAngMom_dynamics_1-->A car with a tire radius of 0.31 m accelerates from 0 to 39 m/s in 9.3 seconds. What is the angular acceleration of the wheel?} -a) 1.12 x 10<sup>1</sup> m +b) 1.35 x 10<sup>1</sup> m -c) 1.64 x 10<sup>1</sup> m -d) 1.99 x 10<sup>1</sup> m -e) 2.41 x 10<sup>1</sup> m ===6=== {<!--a10rotationalMotionAngMom_dynamics_1-->A car with a tire radius of 0.21 m accelerates from 0 to 26 m/s in 11.1 seconds. What is the angular acceleration of the wheel?} -a) 9.21 x 10<sup>0</sup> m +b) 1.12 x 10<sup>1</sup> m -c) 1.35 x 10<sup>1</sup> m -d) 1.64 x 10<sup>1</sup> m -e) 1.98 x 10<sup>1</sup> m ===7=== {<!--a10rotationalMotionAngMom_dynamics_1-->A car with a tire radius of 0.24 m accelerates from 0 to 33 m/s in 8.5 seconds. What is the angular acceleration of the wheel?} -a) 1.34 x 10<sup>1</sup> m +b) 1.62 x 10<sup>1</sup> m -c) 1.96 x 10<sup>1</sup> m -d) 2.37 x 10<sup>1</sup> m -e) 2.88 x 10<sup>1</sup> m ===8=== {<!--a10rotationalMotionAngMom_dynamics_1-->A car with a tire radius of 0.21 m accelerates from 0 to 26 m/s in 9.1 seconds. What is the angular acceleration of the wheel?} -a) 7.65 x 10<sup>0</sup> m -b) 9.27 x 10<sup>0</sup> m -c) 1.12 x 10<sup>1</sup> m +d) 1.36 x 10<sup>1</sup> m -e) 1.65 x 10<sup>1</sup> m ===9=== {<!--a10rotationalMotionAngMom_dynamics_1-->A car with a tire radius of 0.28 m accelerates from 0 to 22 m/s in 10 seconds. What is the angular acceleration of the wheel?} -a) 5.35 x 10<sup>0</sup> m -b) 6.49 x 10<sup>0</sup> m +c) 7.86 x 10<sup>0</sup> m -d) 9.52 x 10<sup>0</sup> m -e) 1.15 x 10<sup>1</sup> m ===10=== {<!--a10rotationalMotionAngMom_dynamics_1-->A car with a tire radius of 0.23 m accelerates from 0 to 31 m/s in 11.3 seconds. What is the angular acceleration of the wheel?} -a) 9.85 x 10<sup>0</sup> m +b) 1.19 x 10<sup>1</sup> m -c) 1.45 x 10<sup>1</sup> m -d) 1.75 x 10<sup>1</sup> m -e) 2.12 x 10<sup>1</sup> m ===11=== {<!--a10rotationalMotionAngMom_dynamics_1-->A car with a tire radius of 0.21 m accelerates from 0 to 29 m/s in 11 seconds. What is the angular acceleration of the wheel?} +a) 1.26 x 10<sup>1</sup> m -b) 1.52 x 10<sup>1</sup> m -c) 1.84 x 10<sup>1</sup> m -d) 2.23 x 10<sup>1</sup> m -e) 2.7 x 10<sup>1</sup> m ===12=== {<!--a10rotationalMotionAngMom_dynamics_1-->A car with a tire radius of 0.23 m accelerates from 0 to 23 m/s in 10.5 seconds. What is the angular acceleration of the wheel?} +a) 9.52 x 10<sup>0</sup> m -b) 1.15 x 10<sup>1</sup> m -c) 1.4 x 10<sup>1</sup> m -d) 1.69 x 10<sup>1</sup> m -e) 2.05 x 10<sup>1</sup> m ===13=== {<!--a10rotationalMotionAngMom_dynamics_1-->A car with a tire radius of 0.37 m accelerates from 0 to 28 m/s in 11.9 seconds. What is the angular acceleration of the wheel?} +a) 6.36 x 10<sup>0</sup> m -b) 7.7 x 10<sup>0</sup> m -c) 9.33 x 10<sup>0</sup> m -d) 1.13 x 10<sup>1</sup> m -e) 1.37 x 10<sup>1</sup> m
a10rotationalMotionAngMom_dynamics_v1
copies
===2=== {<!--a10rotationalMotionAngMom_dynamics_2-->A lead filled bicycle wheel of radius 0.47 m and mass 2.2 kg is rotating at a frequency of 1.9 revolutions per second. What is the moment of inertia?} -a) 3.31 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -b) 4.01 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> +c) 4.86 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -d) 5.89 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -e) 7.13 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> ===3=== {<!--a10rotationalMotionAngMom_dynamics_2-->A lead filled bicycle wheel of radius 0.33 m and mass 2.2 kg is rotating at a frequency of 1.3 revolutions per second. What is the moment of inertia?} +a) 2.4 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -b) 2.9 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -c) 3.52 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -d) 4.26 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -e) 5.16 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> ===4=== {<!--a10rotationalMotionAngMom_dynamics_2-->A lead filled bicycle wheel of radius 0.37 m and mass 2.3 kg is rotating at a frequency of 1.6 revolutions per second. What is the moment of inertia?} +a) 3.15 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -b) 3.81 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -c) 4.62 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -d) 5.6 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -e) 6.78 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> ===5=== {<!--a10rotationalMotionAngMom_dynamics_2-->A lead filled bicycle wheel of radius 0.35 m and mass 2.7 kg is rotating at a frequency of 1.5 revolutions per second. What is the moment of inertia?} -a) 2.25 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -b) 2.73 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> +c) 3.31 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -d) 4.01 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -e) 4.85 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> ===6=== {<!--a10rotationalMotionAngMom_dynamics_2-->A lead filled bicycle wheel of radius 0.56 m and mass 2.9 kg is rotating at a frequency of 1.6 revolutions per second. What is the moment of inertia?} -a) 7.51 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> +b) 9.09 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -c) 1.1 x 10<sup>0</sup> kg m<sup>2</sup>/s<sup>2</sup> -d) 1.33 x 10<sup>0</sup> kg m<sup>2</sup>/s<sup>2</sup> -e) 1.62 x 10<sup>0</sup> kg m<sup>2</sup>/s<sup>2</sup> ===7=== {<!--a10rotationalMotionAngMom_dynamics_2-->A lead filled bicycle wheel of radius 0.43 m and mass 2.2 kg is rotating at a frequency of 1.1 revolutions per second. What is the moment of inertia?} -a) 1.89 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -b) 2.29 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -c) 2.77 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -d) 3.36 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> +e) 4.07 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> ===8=== {<!--a10rotationalMotionAngMom_dynamics_2-->A lead filled bicycle wheel of radius 0.35 m and mass 2.3 kg is rotating at a frequency of 1.1 revolutions per second. What is the moment of inertia?} +a) 2.82 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -b) 3.41 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -c) 4.14 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -d) 5.01 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -e) 6.07 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> ===9=== {<!--a10rotationalMotionAngMom_dynamics_2-->A lead filled bicycle wheel of radius 0.38 m and mass 2.8 kg is rotating at a frequency of 1.7 revolutions per second. What is the moment of inertia?} -a) 3.34 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> +b) 4.04 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -c) 4.9 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -d) 5.93 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -e) 7.19 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> ===10=== {<!--a10rotationalMotionAngMom_dynamics_2-->A lead filled bicycle wheel of radius 0.37 m and mass 2.1 kg is rotating at a frequency of 1.4 revolutions per second. What is the moment of inertia?} +a) 2.87 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -b) 3.48 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -c) 4.22 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -d) 5.11 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -e) 6.19 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> ===11=== {<!--a10rotationalMotionAngMom_dynamics_2-->A lead filled bicycle wheel of radius 0.58 m and mass 2.8 kg is rotating at a frequency of 1.8 revolutions per second. What is the moment of inertia?} +a) 9.42 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -b) 1.14 x 10<sup>0</sup> kg m<sup>2</sup>/s<sup>2</sup> -c) 1.38 x 10<sup>0</sup> kg m<sup>2</sup>/s<sup>2</sup> -d) 1.67 x 10<sup>0</sup> kg m<sup>2</sup>/s<sup>2</sup> -e) 2.03 x 10<sup>0</sup> kg m<sup>2</sup>/s<sup>2</sup> ===12=== {<!--a10rotationalMotionAngMom_dynamics_2-->A lead filled bicycle wheel of radius 0.41 m and mass 2.9 kg is rotating at a frequency of 1.7 revolutions per second. What is the moment of inertia?} -a) 4.02 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> +b) 4.87 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -c) 5.91 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -d) 7.16 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -e) 8.67 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> ===13=== {<!--a10rotationalMotionAngMom_dynamics_2-->A lead filled bicycle wheel of radius 0.4 m and mass 2.7 kg is rotating at a frequency of 1.6 revolutions per second. What is the moment of inertia?} +a) 4.32 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -b) 5.23 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -c) 6.34 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -d) 7.68 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup> -e) 9.31 x 10<sup>-1</sup> kg m<sup>2</sup>/s<sup>2</sup>
a10rotationalMotionAngMom_dynamics_v1
copies
===2=== {<!--a10rotationalMotionAngMom_dynamics_3-->A lead filled bicycle wheel of radius 0.47 m and mass 2.2 kg is rotating at a frequency of 1.9 revolutions per second. What is the total kinetic energy if the wheel is rotating about a stationary axis?} +a) 3.46 x 10<sup>1</sup> J -b) 4.2 x 10<sup>1</sup> J -c) 5.08 x 10<sup>1</sup> J -d) 6.16 x 10<sup>1</sup> J -e) 7.46 x 10<sup>1</sup> J ===3=== {<!--a10rotationalMotionAngMom_dynamics_3-->A lead filled bicycle wheel of radius 0.33 m and mass 2.2 kg is rotating at a frequency of 1.3 revolutions per second. What is the total kinetic if the wheel is rotating about a stationary axis?} -a) 6.6 x 10<sup>0</sup> J +b) 7.99 x 10<sup>0</sup> J -c) 9.68 x 10<sup>0</sup> J -d) 1.17 x 10<sup>1</sup> J -e) 1.42 x 10<sup>1</sup> J ===4=== {<!--a10rotationalMotionAngMom_dynamics_3-->A lead filled bicycle wheel of radius 0.37 m and mass 2.3 kg is rotating at a frequency of 1.6 revolutions per second. What is the total kinetic energy if the wheel is rotating about a stationary axis?} -a) 7.39 x 10<sup>0</sup> J -b) 8.95 x 10<sup>0</sup> J -c) 1.08 x 10<sup>1</sup> J -d) 1.31 x 10<sup>1</sup> J +e) 1.59 x 10<sup>1</sup> J ===5=== {<!--a10rotationalMotionAngMom_dynamics_3-->A lead filled bicycle wheel of radius 0.35 m and mass 2.7 kg is rotating at a frequency of 1.5 revolutions per second. What is the total kinetic energy if the wheel is rotating about a stationary axis?} -a) 8.26 x 10<sup>0</sup> J -b) 1 x 10<sup>1</sup> J -c) 1.21 x 10<sup>1</sup> J +d) 1.47 x 10<sup>1</sup> J -e) 1.78 x 10<sup>1</sup> J ===6=== {<!--a10rotationalMotionAngMom_dynamics_3-->A lead filled bicycle wheel of radius 0.56 m and mass 2.9 kg is rotating at a frequency of 1.6 revolutions per second. What is the total kinetic energy if the wheel is rotating about a stationary axis?} -a) 3.79 x 10<sup>1</sup> J +b) 4.6 x 10<sup>1</sup> J -c) 5.57 x 10<sup>1</sup> J -d) 6.75 x 10<sup>1</sup> J -e) 8.17 x 10<sup>1</sup> J ===7=== {<!--a10rotationalMotionAngMom_dynamics_3-->A lead filled bicycle wheel of radius 0.43 m and mass 2.2 kg is rotating at a frequency of 1.1 revolutions per second. What is the total kinetic energy if the wheel is rotating about a stationary axis?} -a) 4.51 x 10<sup>0</sup> J -b) 5.46 x 10<sup>0</sup> J -c) 6.62 x 10<sup>0</sup> J -d) 8.02 x 10<sup>0</sup> J +e) 9.72 x 10<sup>0</sup> J ===8=== {<!--a10rotationalMotionAngMom_dynamics_3-->A lead filled bicycle wheel of radius 0.35 m and mass 2.3 kg is rotating at a frequency of 1.1 revolutions per second. What is the total kinetic energy if the wheel is rotating about a stationary axis?} -a) 3.78 x 10<sup>0</sup> J -b) 4.58 x 10<sup>0</sup> J -c) 5.55 x 10<sup>0</sup> J +d) 6.73 x 10<sup>0</sup> J -e) 8.15 x 10<sup>0</sup> J ===9=== {<!--a10rotationalMotionAngMom_dynamics_3-->A lead filled bicycle wheel of radius 0.38 m and mass 2.8 kg is rotating at a frequency of 1.7 revolutions per second. What is the total kinetic energy if the wheel is rotating about a stationary axis?} -a) 1.07 x 10<sup>1</sup> J -b) 1.3 x 10<sup>1</sup> J -c) 1.57 x 10<sup>1</sup> J -d) 1.9 x 10<sup>1</sup> J +e) 2.31 x 10<sup>1</sup> J ===10=== {<!--a10rotationalMotionAngMom_dynamics_3-->A lead filled bicycle wheel of radius 0.37 m and mass 2.1 kg is rotating at a frequency of 1.4 revolutions per second. What is the total kinetic energy if the wheel is rotating about a stationary axis?} -a) 5.16 x 10<sup>0</sup> J -b) 6.25 x 10<sup>0</sup> J -c) 7.58 x 10<sup>0</sup> J -d) 9.18 x 10<sup>0</sup> J +e) 1.11 x 10<sup>1</sup> J ===11=== {<!--a10rotationalMotionAngMom_dynamics_3-->A lead filled bicycle wheel of radius 0.58 m and mass 2.8 kg is rotating at a frequency of 1.8 revolutions per second. What is the total kinetic energy if the wheel is rolling about a stationary axis?} -a) 3.39 x 10<sup>1</sup> J -b) 4.1 x 10<sup>1</sup> J -c) 4.97 x 10<sup>1</sup> J +d) 6.02 x 10<sup>1</sup> J -e) 7.3 x 10<sup>1</sup> J ===12=== {<!--a10rotationalMotionAngMom_dynamics_3-->A lead filled bicycle wheel of radius 0.41 m and mass 2.9 kg is rotating at a frequency of 1.7 revolutions per second. What is the total kinetic energy if the wheel is rolling about a stationary axis?} +a) 2.78 x 10<sup>1</sup> J -b) 3.37 x 10<sup>1</sup> J -c) 4.08 x 10<sup>1</sup> J -d) 4.95 x 10<sup>1</sup> J -e) 5.99 x 10<sup>1</sup> J ===13=== {<!--a10rotationalMotionAngMom_dynamics_3-->A lead filled bicycle wheel of radius 0.4 m and mass 2.7 kg is rotating at a frequency of 1.6 revolutions per second. What is the total kinetic energy if the wheel is rolling about a stationary axis?} -a) 1.23 x 10<sup>1</sup> J -b) 1.49 x 10<sup>1</sup> J -c) 1.8 x 10<sup>1</sup> J +d) 2.18 x 10<sup>1</sup> J -e) 2.64 x 10<sup>1</sup> J
a10rotationalMotionAngMom_dynamics_v1
copies
===2=== {<!--a10rotationalMotionAngMom_dynamics_4-->[[File:Yo yo moment of inertia.jpg|right|280px]]The moment of inertia of a solid disk of mass, M, and radius, R, is ½ MR<sup>2</sup>. Two identical disks, each with mass 2.7 kg are attached. The larger disk has a diameter of 0.87 m, and the smaller disk has a diameter of 0.45 m. If a force of 55 N is applied at the rim of the smaller disk, what is the angular acceleration?} -a) 2.6 x 10<sup>1</sup> s<sup>-2</sup> -b) 3.15 x 10<sup>1</sup> s<sup>-2</sup> +c) 3.82 x 10<sup>1</sup> s<sup>-2</sup> -d) 4.63 x 10<sup>1</sup> s<sup>-2</sup> -e) 5.61 x 10<sup>1</sup> s<sup>-2</sup> ===3=== {<!--a10rotationalMotionAngMom_dynamics_4-->[[File:Yo yo moment of inertia.jpg|right|280px]]The moment of inertia of a solid disk of mass, M, and radius, R, is ½ MR<sup>2</sup>. Two identical disks, each with mass 3.6 kg are attached. The larger disk has a diameter of 0.71 m, and the smaller disk has a diameter of 0.32 m. If a force of 13 N is applied at the rim of the smaller disk, what is the angular acceleration?} -a) 5.19 x 10<sup>0</sup> s<sup>-2</sup> -b) 6.29 x 10<sup>0</sup> s<sup>-2</sup> +c) 7.62 x 10<sup>0</sup> s<sup>-2</sup> -d) 9.23 x 10<sup>0</sup> s<sup>-2</sup> -e) 1.12 x 10<sup>1</sup> s<sup>-2</sup> ===4=== {<!--a10rotationalMotionAngMom_dynamics_4-->[[File:Yo yo moment of inertia.jpg|right|280px]]The moment of inertia of a solid disk of mass, M, and radius, R, is ½ MR<sup>2</sup>. Two identical disks, each with mass 4.7 kg are attached. The larger disk has a diameter of 0.81 m, and the smaller disk has a diameter of 0.44 m. If a force of 97 N is applied at the rim of the smaller disk, what is the angular acceleration?} +a) 4.27 x 10<sup>1</sup> s<sup>-2</sup> -b) 5.18 x 10<sup>1</sup> s<sup>-2</sup> -c) 6.27 x 10<sup>1</sup> s<sup>-2</sup> -d) 7.6 x 10<sup>1</sup> s<sup>-2</sup> -e) 9.21 x 10<sup>1</sup> s<sup>-2</sup> ===5=== {<!--a10rotationalMotionAngMom_dynamics_4-->[[File:Yo yo moment of inertia.jpg|right|280px]]The moment of inertia of a solid disk of mass, M, and radius, R, is ½ MR<sup>2</sup>. Two identical disks, each with mass 3.4 kg are attached. The larger disk has a diameter of 0.91 m, and the smaller disk has a diameter of 0.56 m. If a force of 35 N is applied at the rim of the smaller disk, what is the angular acceleration?} -a) 9.37 x 10<sup>0</sup> s<sup>-2</sup> -b) 1.14 x 10<sup>1</sup> s<sup>-2</sup> -c) 1.38 x 10<sup>1</sup> s<sup>-2</sup> -d) 1.67 x 10<sup>1</sup> s<sup>-2</sup> +e) 2.02 x 10<sup>1</sup> s<sup>-2</sup> ===6=== {<!--a10rotationalMotionAngMom_dynamics_4-->[[File:Yo yo moment of inertia.jpg|right|280px]]The moment of inertia of a solid disk of mass, M, and radius, R, is ½ MR<sup>2</sup>. Two identical disks, each with mass 9.3 kg are attached. The larger disk has a diameter of 0.83 m, and the smaller disk has a diameter of 0.46 m. If a force of 96 N is applied at the rim of the smaller disk, what is the angular acceleration?} -a) 9.79 x 10<sup>0</sup> s<sup>-2</sup> -b) 1.19 x 10<sup>1</sup> s<sup>-2</sup> -c) 1.44 x 10<sup>1</sup> s<sup>-2</sup> -d) 1.74 x 10<sup>1</sup> s<sup>-2</sup> +e) 2.11 x 10<sup>1</sup> s<sup>-2</sup> ===7=== {<!--a10rotationalMotionAngMom_dynamics_4-->[[File:Yo yo moment of inertia.jpg|right|280px]]The moment of inertia of a solid disk of mass, M, and radius, R, is ½ MR<sup>2</sup>. Two identical disks, each with mass 3 kg are attached. The larger disk has a diameter of 0.92 m, and the smaller disk has a diameter of 0.48 m. If a force of 70 N is applied at the rim of the smaller disk, what is the angular acceleration?} -a) 2.83 x 10<sup>1</sup> s<sup>-2</sup> -b) 3.43 x 10<sup>1</sup> s<sup>-2</sup> +c) 4.16 x 10<sup>1</sup> s<sup>-2</sup> -d) 5.04 x 10<sup>1</sup> s<sup>-2</sup> -e) 6.11 x 10<sup>1</sup> s<sup>-2</sup> ===8=== {<!--a10rotationalMotionAngMom_dynamics_4-->[[File:Yo yo moment of inertia.jpg|right|280px]]The moment of inertia of a solid disk of mass, M, and radius, R, is ½ MR<sup>2</sup>. Two identical disks, each with mass 5.2 kg are attached. The larger disk has a diameter of 0.92 m, and the smaller disk has a diameter of 0.47 m. If a force of 53 N is applied at the rim of the smaller disk, what is the angular acceleration?} -a) 1.48 x 10<sup>1</sup> s<sup>-2</sup> +b) 1.8 x 10<sup>1</sup> s<sup>-2</sup> -c) 2.18 x 10<sup>1</sup> s<sup>-2</sup> -d) 2.64 x 10<sup>1</sup> s<sup>-2</sup> -e) 3.19 x 10<sup>1</sup> s<sup>-2</sup> ===9=== {<!--a10rotationalMotionAngMom_dynamics_4-->[[File:Yo yo moment of inertia.jpg|right|280px]]The moment of inertia of a solid disk of mass, M, and radius, R, is ½ MR<sup>2</sup>. Two identical disks, each with mass 9.7 kg are attached. The larger disk has a diameter of 0.83 m, and the smaller disk has a diameter of 0.41 m. If a force of 31 N is applied at the rim of the smaller disk, what is the angular acceleration?} -a) 3.44 x 10<sup>0</sup> s<sup>-2</sup> -b) 4.17 x 10<sup>0</sup> s<sup>-2</sup> -c) 5.05 x 10<sup>0</sup> s<sup>-2</sup> +d) 6.12 x 10<sup>0</sup> s<sup>-2</sup> -e) 7.41 x 10<sup>0</sup> s<sup>-2</sup> ===10=== {<!--a10rotationalMotionAngMom_dynamics_4-->[[File:Yo yo moment of inertia.jpg|right|280px]]The moment of inertia of a solid disk of mass, M, and radius, R, is ½ MR<sup>2</sup>. Two identical disks, each with mass 1.8 kg are attached. The larger disk has a diameter of 0.85 m, and the smaller disk has a diameter of 0.44 m. If a force of 14 N is applied at the rim of the smaller disk, what is the angular acceleration?} -a) 8.4 x 10<sup>0</sup> s<sup>-2</sup> -b) 1.02 x 10<sup>1</sup> s<sup>-2</sup> -c) 1.23 x 10<sup>1</sup> s<sup>-2</sup> +d) 1.49 x 10<sup>1</sup> s<sup>-2</sup> -e) 1.81 x 10<sup>1</sup> s<sup>-2</sup> ===11=== {<!--a10rotationalMotionAngMom_dynamics_4-->[[File:Yo yo moment of inertia.jpg|right|280px]]The moment of inertia of a solid disk of mass, M, and radius, R, is ½ MR<sup>2</sup>. Two identical disks, each with mass 8.1 kg are attached. The larger disk has a diameter of 0.99 m, and the smaller disk has a diameter of 0.63 m. If a force of 87 N is applied at the rim of the smaller disk, what is the angular acceleration?} -a) 9.12 x 10<sup>0</sup> s<sup>-2</sup> -b) 1.11 x 10<sup>1</sup> s<sup>-2</sup> -c) 1.34 x 10<sup>1</sup> s<sup>-2</sup> -d) 1.62 x 10<sup>1</sup> s<sup>-2</sup> +e) 1.97 x 10<sup>1</sup> s<sup>-2</sup> ===12=== {<!--a10rotationalMotionAngMom_dynamics_4-->[[File:Yo yo moment of inertia.jpg|right|280px]]The moment of inertia of a solid disk of mass, M, and radius, R, is ½ MR<sup>2</sup>. Two identical disks, each with mass 3.9 kg are attached. The larger disk has a diameter of 0.9 m, and the smaller disk has a diameter of 0.46 m. If a force of 44 N is applied at the rim of the smaller disk, what is the angular acceleration?} -a) 9.43 x 10<sup>0</sup> s<sup>-2</sup> -b) 1.14 x 10<sup>1</sup> s<sup>-2</sup> -c) 1.38 x 10<sup>1</sup> s<sup>-2</sup> -d) 1.68 x 10<sup>1</sup> s<sup>-2</sup> +e) 2.03 x 10<sup>1</sup> s<sup>-2</sup> ===13=== {<!--a10rotationalMotionAngMom_dynamics_4-->[[File:Yo yo moment of inertia.jpg|right|280px]]The moment of inertia of a solid disk of mass, M, and radius, R, is ½ MR<sup>2</sup>. Two identical disks, each with mass 1.8 kg are attached. The larger disk has a diameter of 0.86 m, and the smaller disk has a diameter of 0.38 m. If a force of 31 N is applied at the rim of the smaller disk, what is the angular acceleration?} -a) 1.37 x 10<sup>1</sup> s<sup>-2</sup> -b) 1.67 x 10<sup>1</sup> s<sup>-2</sup> -c) 2.02 x 10<sup>1</sup> s<sup>-2</sup> -d) 2.44 x 10<sup>1</sup> s<sup>-2</sup> +e) 2.96 x 10<sup>1</sup> s<sup>-2</sup>
This article is issued from Wikiversity - version of the Sunday, August 16, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.