Physics Formulae/Equations of Light

< Physics Formulae

Lead Article: Tables of Physics Formulae


This article is a summary of the laws, principles, defining quantities, and useful formulae in the analysis of photonics.


Geometric Optics


Definitions, Quantities


Definitions


For conveinece in the table below, "r-surface" refers to reflecting/refracting surface. This is not a standard abbreviation.

Quantity (Common Name/s) (Common) Symbol/s Defining Equation SI Units Dimension
Refractive Index of substance n n = \frac{c}{v} \,\!

n = \sqrt{\frac{\epsilon \mu}{\epsilon_0 \mu_0}} = \sqrt{\epsilon_r \mu_r} \,\!

dimensionless dimensionless
Object Distance s m [L]
Image Distance s' m [L]
Focal Length f m [L]
Optcal Power P  P = \frac{1}{f} = \frac{2}{r} \,\! D (Dipotres) = m-1 [L]-1
Radius of Curvature

of r-surface

f m [L]
Lateral Magnification m  m = \frac{h'}{h} = -\frac{s'}{s} \,\!

m and h negative when upside down

dimensionless dimensionless
Angular Magnification m  m = \frac{\theta'}{\theta} = \frac{f}{f'} \,\! dimensionless dimensionless
Dispersive Power ω  \omega = \frac{n_\mathrm{blue}-n_\mathrm{red}}{n_\mathrm{yellow} - 1}\,\!


The refractive indicies are determined

by the frequencies of the Fraunhöfer lines.

dimensionless dimensionless

Sign Conventions and Implications

There are different sign conventions which can be used, perhaps the the simplist to understand and recall is the one below[1].


The general pattern is the following:


Distances for real rays of light actually traversed are positve

Distances for apparent (i.e. virtual) rays of light not actually traversed are negative.

Distances are measured to the the apex of the r-surface on the optic axis.

Quantity + -
s Object in front of r-surface Object behind r-surface
s' Real image Virtual image
f, P Converging r-surface Diverging r-surface
r r-surface centre of curvature

on same side as object

r-surface centre of curvature

on opposite side as object

Laws of Geomtric Optics

Law of Reflection \theta_1=\theta_2\,\!
Snell's Law of Refraction,

Angles of Refraction

n_1\sin\theta_1 = n_2\sin\theta_2\,\!

Mirrors

Image distance in a Plane Mirror  s = -s' \,\!
Image distance in a Spherical Mirror \frac{n_1}{s} + \frac{n_2}{s'} = \frac{n_2 - n_1}{r} \,\!
Spherical Mirror Focal Length f =r/2\,\!
Spherical Mirror \frac{1}{s} + \frac{1}{s'} = \frac{1}{f} = \frac{2}{r} \,\!

General Media

Critical Angle of Total Internal Reflection  \sin \theta_c = \frac{n_2}{n_1}\,\!

Lenses

Thin Lens, Focal Length  \frac{1}{s} + \frac{1}{s'} = \frac{1}{f} \,\!

\frac{1}{f} = \frac{n_\mathrm{lens}}{n_\mathrm{med}-1} \left ( \frac{1}{r_1} - \frac{1}{r_2} \right )\,\!

Newton's Formula  xy = f^2 \,\!


 x = s - f \,\!

 y = s' - f \,\!

Prisms

Minimum Deviation Angle


A = Prism Angle

D = Deviation Angle

 n_\mathrm{prism} = \frac{\sin\left ( \frac{A + D_\mathrm{min}}{2} \right ) }{\sin\frac{A}{2}} \,\!

 A \le \theta_c \,\!

Radiometry

Quantity (Common Name/s) (Common) Symbol/s Defining Equation SI Unit Dimension
Radiant Power Q J = [M] [L]2 [T]-2
Radiant Flux, Radiant Power Φ W
Radiant Intensity I W sr-1 [M] [L]2 [T]-3
Radiance, Radiant Intensity L W sr-1 m-2
Irradiance, Incident Intensity,

Intensity incident on a surface

E, I W sr-1 m-2
Radiant Exitance, Radiant Emittance M W m-2
Radiosity (heat transfer), Radiosity, emitted plus

reflected Intensity leaving a surface

J, Jλ W m-2
Spectral Radiance Lλ, Lν W sr-1 m-3 = W sr-1 Hz-2
Spectral Irradiance Eλ, Eν W m-3 = W m-2 Hz-1

Photometry

Quantity (Common Name/s) (Common) Symbol/s Defining Equation SI Units Dimension
Luminous energy Qv J = lm s [M] [L]2 [T]-2
Luminous flux, luminous power F, Φv cd sr = lm = J s-1 [Φ]
Luminous intensity Iv cd = lm sr-1 [Φ]
Luminance Lv cd m-2 [Φ] [L]-2
Illuminance (light incident on a surface) Ev lx = lm m-2 [Φ] [L]-2
Luminous Emittance (light emitted from a surface Mv lx = lm m2 [Φ] [L]-2
Luminous efficacy  \frac{\Phi_v}{\Phi_\lambda}  \,\! lm W-1 [Φ] [T]2 [M]-1 [L]-2

Physical Optics


Luminal EM Waves

Electric Field Component \mathbf{E} = \mathbf{E}_0 \sin(kx-\omega t)\,\!
Magnetic Field Component \mathbf{B} = \mathbf{B}_0 \sin(kx-\omega t)\,\!
Luminal Speed in Meduim c = \frac{1}{\sqrt{\mu \epsilon}} = \frac{\left | \mathbf{E} \right |}{\left | \mathbf{B} \right |} \,\!
Poynting Vector  Y_0 \,\! = Admittance of Free Space


 Z_0 \,\! = Impedance of Free Space


 Y_0 = \frac{1}{Z_0} = \sqrt{\frac{\mu_0}{\epsilon_0}} \,\!

\mathbf{S} = \frac{1}{\mu_0}\mathbf{E}\times\mathbf{B}\,\!


\mathbf{S} = \mathbf{E}\times\mathbf{H}\,\!


\mathbf{S} = \epsilon_0 \mathbf{D}\times\mathbf{H}\,\!


\mathbf{S} = \frac{\epsilon_0}{\mu_0} \mathbf{D}\times\mathbf{B} = Y_0 \mathbf{D}\times\mathbf{B} \,\!

Poynting Vector Magnitude  \left | \mathbf{S} \right | = \frac{\left | \mathbf{E} \right | \left | \mathbf{B} \right |}{\mu_0} = \frac{\left | \mathbf{E} \right |^2}{c\mu_0} \,\!
Root Mean Square Electric Field of Light \mathbf{E}_\mathrm{rms} = \frac{\mathbf{E}}{\sqrt{2}}\,\!
Irradiance, Light Intensity  I = \frac{\langle \left | \mathbf{E} \right |^2 \rangle}{c\mu_0} \,\!
Irradiance, Light Intensity

due to a Point Source

\Omega\,\! = solid angle

r\,\! = position from source

I = \frac{P_0}{\Omega r^2}\,\!
Radiation Momentum, Total Absorption (Inelastic) \Delta p = \frac{\Delta U}{c}\,\!
Radiation Momentum, Total Reflection (Elastic) \Delta p = {2 \Delta U}{c}\,\!
Radiation Pressure, Total Absorption (Inelastic) p_r = I/c\,\!
Radiation Pressure, Total Reflection (Elastic) p_r = 2I/c\,\!
Intensity Unpolarized Light I = I_0/2\,\!
Malus' Law, Plane Polarized Light I = I_0\cos^2\theta\,\!
Brewster's Law of Total

Reflective Polarisation,

Brewster's Angle

\tan\theta_B = \frac{n_2}{n_1} \,\!

Diffraction/Interferance


Diffraction

Path Length Difference \Delta x = d \sin\theta\,\!
Diffraction Grating Equation d \sin\theta = n\lambda\,\!

Minima

 n=m \,\!


Maxima

 n=m+\frac{1}{2} \,\!


 m \in \mathbf{Z} \,\!

Diffraction Grating Half-Width \Delta\theta_{hw} = \lambda/Nd\cos\theta\,\!
Diffraction Grating Dispersion D=N/d \cos\theta\,\!
Diffraction Grating resolving power R=Nn\,\!
X-Ray Molecular Lattice

Diffraction, Bragg's law,

Lattice Distance

2d\sin\theta = N\lambda\,\!
Double-Slit Interference Intensity I = 4 I_0 \cos ^2 \left ( \frac{\pi d}{\lambda}\sin\theta \right )\,\!
Thin-Film Optics Air Minima

2L = \left ( N + \frac{1}{2} \right )\frac{\lambda}{n_2}\,\!

Air Maxima

2L = N \frac{\lambda}{n_2}\,\!

Single-Slit Intensity I \left ( \theta \right ) = I_0 \left ( \frac{\sin\alpha}{\alpha} \right )^2\,\!
Double Slit Intensity I \left ( \theta \right ) = I_0 \left ( \cos^2 \beta \right ) \left ( \frac{\sin\alpha }{\alpha} \right )^2\,\!

\alpha = \frac{\pi a }{\lambda} \sin\theta \,\!

Multiple-Slit Intensity I \left ( \theta \right ) = I_0 \left [ \dfrac{\sin \left ( \dfrac{N \pi a }{\lambda} \sin\theta  \right ) }{ \sin \left ( \dfrac{\pi a }{\lambda} \sin\theta \right ) } \right ]^2\,\!
Circular Aperture First Minimum \sin\theta = 1.22\frac{\lambda}{d}\,\!
Rayleigh's Criterion \theta_R = 1.22\frac{\lambda}{d} \,\!

External Links


Poynting Vector

EM Waves

Photometry

Radiometry

Interferometry


Referances

  1. Essential Principles of Physics, M.J. Hodgson and P.M. Whelan, John Murray 2nd Edition, 1978, ISBN 0-7195-3382-1
This article is issued from Wikiversity - version of the Friday, July 17, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.