Nonlinear finite elements/Timoshenko beams

< Nonlinear finite elements

Timoshenko Beam

Timoshenko beam.

Displacements


\begin{align}
u_1 & = u_0(x) + z \varphi_x \\
u_2 & = 0 \\
u_3 & = w_0(x) 
\end{align}

Strains


\begin{align}
\varepsilon_{xx}& = 
 \varepsilon_{xx}^0 + z \varepsilon_{xx}^1 \\
\gamma_{xz}& = 
 \gamma_{xz}^0
\end{align}

\begin{align}
\varepsilon_{xx}^0 & = \cfrac{du_0}{dx} + 
 \frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2 \\
\varepsilon_{xx}^1 & = \cfrac{d\varphi_x}{dx} \\
\gamma_{xz}^0 & = \varphi_x + \cfrac{dw_0}{dx}
\end{align}

Principle of Virtual Work


 \delta W_{\text{int}} = \delta W_{\text{ext}}

where

\begin{align}
\delta W_{\text{int}} & = \int_{x_a}^{x_b}\int_A (\sigma_{xx}\delta \varepsilon_{xx} +
\sigma_{xz}\delta \gamma_{xz}) dA~dx\\
 & = \int_{x_a}^{x_b} (N_{xx}\delta \varepsilon_{xx}^0 + 
M_{xx}\delta \varepsilon_{xx}^1 + 
Q_{x}\delta \gamma_{xz}^0) ~dx \\
\delta W_{\text{ext}} & = \int_{x_a}^{x_b} q\delta w_0~dx + \int_{x_a}^{x_b} f\delta u_0~dx
\end{align}

 Q_x = { K_s} \int_A \sigma_{xz}~dA

K_s = shear correction factor

Taking Variations


\varepsilon_{xx}^0= \cfrac{du_0}{dx} + \frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2

Take variation


\delta \varepsilon_{xx}^0= 
\cfrac{d(\delta u_0)}{dx} + 
\frac{1}{2}\left(2\cfrac{dw_0}{dx}\right) \left(\cfrac{d(\delta w_0)}{dx}\right) =
\cfrac{d(\delta u_0)}{dx} + 
\cfrac{dw_0}{dx}\cfrac{d(\delta w_0)}{dx} ~.

\varepsilon_{xx}^1= \cfrac{d\varphi_x}{dx}

Take variation


\delta \varepsilon_{xx}^1= \cfrac{d\delta \varphi_x}{dx}

\gamma_{xz}^0= \varphi_x + \cfrac{dw_0}{dx}

Take variation


\delta \gamma_{xz}^0= \delta \varphi_x + \cfrac{d(\delta w_0)}{dx}

Internal Virtual Work

\begin{align}
\int_{x_a}^{x_b} N_{xx}\delta \varepsilon_{xx}^0~dx & = 
\int_{x_a}^{x_b} N_{xx}\left[
\cfrac{d(\delta u_0)}{dx}+\cfrac{dw_0}{dx}\cfrac{d(\delta w_0)}{dx}\right]~dx \\
\int_{x_a}^{x_b} M_{xx}\delta \varepsilon_{xx}^1~dx & = 
\int_{x_a}^{x_b} M_{xx}\left[\cfrac{d\delta \varphi_x}{dx}\right]~dx \\
\int_{x_a}^{x_b} Q_{x}\delta \gamma_{xz}^0~dx & = 
\int_{x_a}^{x_b} Q_{x} \left[\delta \varphi_x + \cfrac{d(\delta w_0)}{dx}\right]~dx 
\end{align}

\begin{align}
 \delta W_{\text{int}} = \int_{x_a}^{x_b} & \left\{ N_{xx}\left[
\cfrac{d(\delta u_0)}{dx}+\cfrac{dw_0}{dx}\cfrac{d(\delta w_0)}{dx}\right]\right.
+ \\
&M_{xx}\left[\cfrac{d\delta \varphi_x}{dx}\right] + 
 \left.
Q_{x} \left[\delta \varphi_x + \cfrac{d(\delta w_0)}{dx}\right]\right\}~dx 
\end{align}

Integrate by Parts

Get rid of derivatives of the variations.

\begin{align}
\int_{x_a}^{x_b} N_{xx}&\left[
\cfrac{d(\delta u_0)}{dx}+\cfrac{dw_0}{dx}\cfrac{d(\delta w_0)}{dx}\right]~dx
= \left[N_{xx}\delta u_0\right]_{x_a}^{x_b} -
 \int_{x_a}^{x_b} \cfrac{dN_{xx}}{dx}\delta u_0~dx + \\
& \qquad \qquad \qquad
 \left[N_{xx}\cfrac{dw_0}{dx}\delta w_0\right]_{x_a}^{x_b} -
 \int_{x_a}^{x_b} \cfrac{d}{dx}\left(N_{xx}\cfrac{dw_0}{dx}\right)\delta w_0~dx \\
\\
\int_{x_a}^{x_b} M_{xx}&\left[\cfrac{d(\delta \varphi_x)}{dx}\right]~dx 
= \left[M_{xx}\delta \varphi_x\right]_{x_a}^{x_b} -
 \int_{x_a}^{x_b} \cfrac{dM_{xx}}{dx}\delta \varphi_x~dx \\
\\
\int_{x_a}^{x_b} Q_{x} &\left[\delta \varphi_x + \cfrac{d(\delta w_0)}{dx}\right]~dx 
= \int_{x_a}^{x_b} Q_{x} \delta \varphi_x~dx + 
\left[Q_{x}\delta w_0\right]_{x_a}^{x_b} -
 \int_{x_a}^{x_b} \cfrac{dQ_{x}}{dx}\delta w_0~dx 
\end{align}

Collect terms

\begin{align}
&\left[N_{xx}{\delta u_0}\right]_{x_a}^{x_b} -
 \int_{x_a}^{x_b} \cfrac{dN_{xx}}{dx}{\delta u_0}~dx + \\
&\left[N_{xx}\cfrac{dw_0}{dx}\delta w_0 +
Q_{x}\delta w_0\right]_{x_a}^{x_b} -
 \int_{x_a}^{x_b} \left[\cfrac{d}{dx}\left(N_{xx}\cfrac{dw_0}{dx}\right) +
 \cfrac{dQ_{x}}{dx}\right]\delta w_0~dx + \\
&\left[M_{xx}\delta \varphi_x\right]_{x_a}^{x_b} -
 \int_{x_a}^{x_b} \left(\cfrac{dM_{xx}}{dx} - Q_x \right)\delta \varphi_x~dx \\
&= \int_{x_a}^{x_b} q~\delta w_0~dx + \int_{x_a}^{x_b} f{\delta u_0}~dx
\end{align}

Euler-Lagrange Equations

\begin{align}
\int_{x_a}^{x_b} \left(\cfrac{dN_{xx}}{dx} + f\right){\delta u_0}~dx & = 
\left[N_{xx}{\delta u_0}\right]_{x_a}^{x_b} \\
\int_{x_a}^{x_b} \left[\cfrac{d}{dx}\left(N_{xx}\cfrac{dw_0}{dx}\right) +
\cfrac{dQ_{x}}{dx} + q \right]~\delta w_0~dx& = 
\left[N_{xx}\cfrac{dw_0}{dx}~\delta w_0 +
Q_{x}~\delta w_0\right]_{x_a}^{x_b} \\
\int_{x_a}^{x_b} \left(\cfrac{dM_{xx}}{dx} - Q_x \right)~\delta \varphi_x~dx &=
\left[M_{xx}~\delta \varphi_x\right]_{x_a}^{x_b}
\end{align}

\begin{align}
\cfrac{dN_{xx}}{dx} + f & = 0 \\
\cfrac{d}{dx}\left(N_{xx}\cfrac{dw_0}{dx}\right) +
\cfrac{dQ_{x}}{dx} + q& = 0 \\
\cfrac{dM_{xx}}{dx} - Q_x& = 0
\end{align}

Constitutive Relations


\sigma_{xx} = E\varepsilon_{xx} ~; \qquad \sigma_{xz} = G\gamma_{xz}

Then,


\begin{align}
N_{xx} & = A_{xx}~\varepsilon_{xx}^0 + B_{xx}~\varepsilon_{xx}^1 \\
\\
M_{xx} & = B_{xx}~\varepsilon_{xx}^0 + D_{xx}~\varepsilon_{xx}^1 \\
\\
Q_{x} & = S_{xx}~\gamma_{xz}^0
\end{align}

where


S_{xx} = K_s\int_A G~dA \qquad \leftarrow \qquad \text{shear stiffness}

Equilibrium Equations

\begin{align}
\cfrac{d}{dx}\left\{
 A_{xx} \left[ \cfrac{du_0}{dx} + \frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2 \right]
 \right\} + f & = 0 \\
\cfrac{d}{dx}\left\{
 S_{xx} \left( \cfrac{dw_0}{dx} + \varphi_x \right) + 
 A_{xx} \cfrac{dw_0}{dx} \left[
\cfrac{du_0}{dx} + \frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2
\right] \right\} + q & = 0 \\
\cfrac{d}{dx}\left(D_{xx}\cfrac{d\varphi_x}{dx}\right) + 
S_{xx}\left( \cfrac{dw_0}{dx} + \varphi_x \right)& = 0 
\end{align}

Weak Form

\begin{align}
\int_{x_a}^{x_b} A_{xx} \cfrac{d(\delta u_0)}{dx}
 \left[ \cfrac{du_0}{dx} + \frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2 \right]~dx &=
 \int_{x_a}^{x_b} f\delta u_0~dx + \left[N_{xx}\delta u_0\right]_{x_a}^{x_b} \\
\\
\int_{x_a}^{x_b} A_{xx}\cfrac{d(\delta w_0)}{dx}\cfrac{dw_0}{dx}
 \left[ \cfrac{du_0}{dx} + \frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2 \right]~dx &+
\int_{x_a}^{x_b} S_{xx}\cfrac{d(\delta w_0)}{dx}\left(\cfrac{dw_0}{dx}+\varphi_x\right)~dx 
= \\
 &\int_{x_a}^{x_b} q\delta u_0~dx + 
\left[\left(N_{xx}\cfrac{dw_0}{dx}+Q_x \right)\delta w_0\right]_{x_a}^{x_b} \\
\\
-\int_{x_a}^{x_b} S_{xx}\delta \varphi_x\left(\cfrac{dw_0}{dx}+\varphi_x\right)~dx & +
\int_{x_a}^{x_b} D_{xx}\cfrac{d(\delta \varphi_x)}{dx}\cfrac{d\varphi_x}{dx}~dx= 
\left[M_{xx}\delta \varphi_x\right]_{x_a}^{x_b} 
\end{align}

Finite element model

Trial Solution

\begin{align}
u_0(x) & = \sum_{j=1}^m u_j~\psi^{(1)}_j~;
\qquad \qquad \delta u_0 = \psi^{(1)}_i \\
\\
w_0(x) & = \sum_{j=1}^n w_j~\psi^{(2)}_j~;
\qquad \qquad \delta w_0 = \psi^{(2)}_i \\
\\
\varphi_x(x) & = \sum_{j=1}^p s_j~\psi^{(3)}_j~;
\qquad \qquad \delta \varphi_x = \psi^{(3)}_i 
\end{align}

Element Stiffness Matrix


\begin{bmatrix}
\mathbf{K}^{11} & \vdots & \mathbf{K}^{12} & \vdots & \mathbf{K}^{13} \\
& \vdots & & \vdots & \\
\mathbf{K}^{21} & \vdots & \mathbf{K}^{22} & \vdots & \mathbf{K}^{23} \\
& \vdots & & \vdots & \\
\mathbf{K}^{31} & \vdots & \mathbf{K}^{32} & \vdots & \mathbf{K}^{33} \\
\end{bmatrix}
\begin{bmatrix}
\mathbf{u} \\\\ \mathbf{w} \\\\ \mathbf{s}
\end{bmatrix}
= 
\begin{bmatrix}
\mathbf{F}^1 \\ \\ \mathbf{F}^2 \\\\ \mathbf{F}^3
\end{bmatrix}

Choice of Approximate Solutions

Choice 1

\psi^{(1)} = linear (m=2)
\psi^{(2)} = linear (n=2)
\psi^{(3)} = linear (p=2).

Nearly singular stiffness matrix (6 \times 6).

Choice 2

\psi^{(1)} = linear (m=2)
\psi^{(2)} = quadratic (n=3)
\psi^{(3)} = linear (p=2).

The stiffness matrix is (7 \times 7). We can statically condense out the interior degree of freedom and get a (6 \times 6) matrix. The element behaves well.

Choice 3

\psi^{(1)} = linear (m=2)
\psi^{(2)} = cubic (n=4)
\psi^{(3)} = quadratic (p=3)

The stiffness matrix is (9 \times 9). We can statically condense out the interior degrees of freedom and get a (6 \times 6) matrix. If the shear and bending stiffnesses are element-wise constant, this element gives exact results.

Shear Locking

Example Case

Linear u_0, Linear w_0, Linear \varphi_x.


 \cfrac{dw_0}{dx} = ~~\text{constant}.

But, for thin beams,


 \cfrac{dw_0}{dx} = ~~\text{slope}~~ = -\varphi_x~~ \leftarrow ~~ (\text{linear!})

If constant \varphi_x


 \cfrac{d\varphi_x}{dx} = 0

Also

  1. Q_x = S_{xx}\varphi_x \ne 0 \implies Non-zero transverse shear.
  2. M_{xx} = D_{xx} \cfrac{d\varphi_x}{dx} = 0 \implies Zero bending energy.

Result: Zero displacements and rotations \implies Shear Locking!

Recall


 \cfrac{d}{dx}\left\{
 A_{xx} \left[ \cfrac{du_0}{dx} + \frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2 \right]
\right\} + f= 0

or,


 \cfrac{d}{dx}\left\{ A_{xx} \varepsilon_{xx}^0 \right\} + f= 0

If f = 0 and A_{xx} = constant


A_{xx}\cfrac{d}{dx} (\varepsilon_{xx}^0)= 0 \qquad \implies \qquad
\varepsilon_{xx}^0 = ~\text{constant}.

If there is only bending but no stretching,


 \varepsilon_{xx}^0 = 0 = \cfrac{du_0}{dx} + \frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2

Hence,


 \cfrac{du_0}{dx} \approx \left(\cfrac{dw_0}{dx}\right)^2

Also recall:


\cfrac{d}{dx}\left\{
 S_{xx} \left( \cfrac{dw_0}{dx} + \varphi_x \right) + 
 A_{xx} \cfrac{dw_0}{dx} \left[
\cfrac{du_0}{dx} + \frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2
\right] \right\} + q = 0

or,


\cfrac{d}{dx}\left\{
 S_{xx} \gamma_{xz}^0 + 
 A_{xx} \cfrac{dw_0}{dx} \varepsilon_{xx}^0 \right\} + q = 0

If q = 0 and S_{xx} = constant, and no membrane strains


S_{xx}\cfrac{d}{dx} (\gamma_{xz}^0)= 0 \qquad \implies \qquad
{\gamma_{xz} = ~\text{constant}}~ = \cfrac{dw_0}{dx} + \varphi_x

Hence,


\varphi_x \approx \cfrac{dw_0}{dx}

Shape functions need to satisfy:


  \cfrac{du_0}{dx} \approx \left(\cfrac{dw_0}{dx}\right)^2 ~;
  \qquad\text{and}\qquad
  \varphi_x\approx \cfrac{dw_0}{dx}
 

Example Case 1

Linear u_0, Linear w_0, Linear \varphi_x.

Example Case 2

Linear u_0, Quadratic w_0, Linear \varphi_x.

Example Case 3

Quadratic u_0, Quadratic w_0, Linear \varphi_x.

Example Case 4

Cubic u_0, Quadratic w_0, Linear \varphi_x.

Overcoming Shear Locking

Option 1

Option 2


This article is issued from Wikiversity - version of the Wednesday, March 05, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.