Nonlinear finite elements/Quiz 1
< Nonlinear finite elementsQuiz
Answer the following questions. You have 15 minutes.
Heat conduction in an isotropic material with a constant thermal conductivity and no internal heat sources is described by Laplace's equation
- Derive a symmetric weak form for the Laplace equation in 1-D (an insulated rod).
- What are the expressions for the components of the finite element stiffness matrix (
) and the load vector (
) for this 1-D problem?
- Assume that the one of ends of the rod is maintained at a temperature of
(which is nonzero) and the other end has a prescribed heat flux of
. If we discretize the rod into two elements, what does the reduced finite element system of equations look like? You do not have to work out the terms of the stiffness matrix - just use generic labels.
- Now, assume that the thermal conductivity of the material varies with temperature. What form does the governing equation take? (We will call this the modified problem.)
- List the steps needed to solve the modified problem using finite elements.
This article is issued from Wikiversity - version of the Sunday, February 22, 2009. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.