Nonlinear finite elements/Matrices

< Nonlinear finite elements

Much of finite elements revolves around forming matrices and solving systems of linear equations using matrices. This learning resource gives you a brief review of matrices.

Matrices

Suppose that you have a linear system of equations


  \begin{align}
    a_{11} x_1 + a_{12} x_2 + a_{13} x_3 + a_{14} x_4 &= b_1  \\
    a_{21} x_1 + a_{22} x_2 + a_{23} x_3 + a_{24} x_4 &= b_2  \\
    a_{31} x_1 + a_{32} x_2 + a_{33} x_3 + a_{34} x_4 &= b_3 \\
    a_{41} x_1 + a_{42} x_2 + a_{43} x_3 + a_{44} x_4 &= b_4
  \end{align}
  ~.

Matrices provide a simple way of expressing these equations. Thus, we can instead write


    \begin{bmatrix}
      a_{11} & a_{12} & a_{13} & a_{14} \\
      a_{21} & a_{22} & a_{23} & a_{24} \\
      a_{31} & a_{32} & a_{33} & a_{34} \\
      a_{41} & a_{42} & a_{43} & a_{44}
    \end{bmatrix}
    \begin{bmatrix}
      x_1 \\ x_2 \\ x_3 \\ x_4
    \end{bmatrix}
    = 
    \begin{bmatrix}
      b_1 \\ b_2 \\ b_3 \\ b_4
    \end{bmatrix}
    ~.

An even more compact notation is


    \left[\mathsf{A}\right] \left[\mathsf{x}\right] = \left[\mathsf{b}\right]  ~~~~\text{or}~~~~ \mathbf{A} \mathbf{x} = \mathbf{b} ~.

Here \mathbf{A} is a 4\times 4 matrix while \mathbf{x} and \mathbf{b} are 4\times 1 matrices. In general, an m \times n matrix \mathbf{A} is a set of numbers arranged in m rows and n columns.


    \mathbf{A} = 
    \begin{bmatrix}
      a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\
      a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\
      \vdots & \vdots & \vdots & \ddots & \vdots \\
      a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn}
    \end{bmatrix}~.

Practice Exercises

Practice: Expressing Linear Equations As Matrices

Types of Matrices

Common types of matrices that we encounter in finite elements are:



            \mathbf{v} = \begin{bmatrix} v_1 & v_2 & v_3 & \dots & v_n
                   \end{bmatrix}

            \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_n
                   \end{bmatrix}

diagonal elements (a_{ii}) nonzero.


            \mathbf{A} = 
            \begin{bmatrix}
              a_{11} & 0 & 0 & \dots & 0 \\
              0 & a_{22} & 0 & \dots & 0 \\
              \vdots & \vdots & \vdots & \ddots & \vdots \\
              0 & 0 & 0 & \dots & a_{nn}
            \end{bmatrix}~.

with each of its nonzero elements (a_{ii}) equal to 1.


            \mathbf{A} = 
            \begin{bmatrix}
              1 & 0 & 0 & \dots & 0 \\
              0 & 1 & 0 & \dots & 0 \\
              \vdots & \vdots & \vdots & \ddots & \vdots \\
              0 & 0 & 0 & \dots & 1
            \end{bmatrix}~.

such that a_{ij} = a_{ji}.


            \mathbf{A} = 
            \begin{bmatrix}
              a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\
              a_{12} & a_{22} & a_{23} & \dots & a_{2n} \\
              a_{13} & a_{23} & a_{33} & \dots & a_{3n} \\
              \vdots & \vdots & \vdots & \ddots & \vdots \\
              a_{1n} & a_{2n} & a_{3n} & \dots & a_{nn}
            \end{bmatrix}~.

such that a_{ij} = -a_{ji}.


            \mathbf{A} = 
            \begin{bmatrix}
              a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\
              -a_{12} & a_{22} & a_{23} & \dots & a_{2n} \\
              -a_{13} & -a_{23} & a_{33} & \dots & a_{3n} \\
              \vdots & \vdots & \vdots & \ddots & \vdots \\
              -a_{1n} & -a_{2n} & -a_{3n} & \dots & a_{nn}
            \end{bmatrix}~.

Note that the diagonal elements of a skew-symmetric matrix have to be zero: a_{ii} = -a_{ii} \Rightarrow a_{ii} = 0.

Matrix addition

Let \mathbf{A} and \mathbf{B} be two m \times n matrices with components a_{ij} and b_{ij}, respectively. Then


    \mathbf{C} = \mathbf{A} + \mathbf{B}  \implies c_{ij} = a_{ij} + b_{ij}

Multiplication by a scalar

Let \mathbf{A} be a m \times n matrix with components a_{ij} and let \lambda be a scalar quantity. Then,


    \mathbf{C} = \lambda\mathbf{A}  \implies c_{ij} = \lambda a_{ij}

Multiplication of matrices

Let \mathbf{A} be a m \times n matrix with components a_{ij}. Let \mathbf{B} be a p \times q matrix with components b_{ij}.

The product \mathbf{C} = \mathbf{A} \mathbf{B} is defined only if n = p. The matrix \mathbf{C} is a m \times q matrix with components c_{ij}. Thus,


    \mathbf{C} = \mathbf{A} \mathbf{B} \implies c_{ij} = \sum^n_{k=1} a_{ik} b_{kj}

Similarly, the product \mathbf{D} = \mathbf{B} \mathbf{A} is defined only if q = m. The matrix \mathbf{D} is a p \times n matrix with components d_{ij}. We have


    \mathbf{D} = \mathbf{B} \mathbf{A} \implies d_{ij} = \sum^m_{k=1} b_{ik} a_{kj}

Clearly, \mathbf{C} \ne \mathbf{D} in general, i.e., the matrix product is not commutative.

However, matrix multiplication is distributive. That means


    \mathbf{A} (\mathbf{B} + \mathbf{C}) = \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{C} ~.

The product is also associative. That means


    \mathbf{A} (\mathbf{B} \mathbf{C}) = (\mathbf{A} \mathbf{B}) \mathbf{C} ~.

Transpose of a matrix

Let \mathbf{A} be a m \times n matrix with components a_{ij}. Then the transpose of the matrix is defined as the n \times m matrix \mathbf{B} = \mathbf{A}^T with components b_{ij} = a_{ji}. That is,


    \mathbf{B} = \mathbf{A}^T = 
    \begin{bmatrix}
      a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\
      a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\
      a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\
      \vdots & \vdots & \vdots & \ddots & \vdots \\
      a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn}
    \end{bmatrix}^T 
    = 
    \begin{bmatrix}
      a_{11} & a_{21} & a_{31} & \dots & a_{m1} \\
      a_{12} & a_{22} & a_{32} & \dots & a_{m2} \\
      a_{13} & a_{23} & a_{33} & \dots & a_{m3} \\
      \vdots & \vdots & \vdots & \ddots & \vdots \\
      a_{1n} & a_{2n} & a_{3n} & \dots & a_{mn}
    \end{bmatrix}

An important identity involving the transpose of matrices is


     {
     (\mathbf{A} \mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T
     }~.

Determinant of a matrix

The determinant of a matrix is defined only for square matrices.

For a 2 \times 2 matrix \mathbf{A}, we have


    \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}
    \implies
    \det(\mathbf{A}) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22}\end{vmatrix}
               = a_{11} a_{22} - a_{12} a_{21} ~.

For a n \times n matrix, the determinant is calculated by expanding into minors as

\begin{align}
    &\det(\mathbf{A}) = \begin{vmatrix}
      a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\
      a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\
      a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\
      \vdots & \vdots & \vdots & \ddots & \vdots \\
      a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn}
    \end{vmatrix}  \\
    &= a_{11}
    \begin{vmatrix}
      a_{22} & a_{23} & \dots & a_{2n} \\
      a_{32} & a_{33} & \dots & a_{3n} \\
      \vdots & \vdots & \ddots & \vdots \\
      a_{n2} & a_{n3} & \dots & a_{nn}
    \end{vmatrix}
    - a_{12}
    \begin{vmatrix}
      a_{21} & a_{23} & \dots & a_{2n} \\
      a_{31} & a_{33} & \dots & a_{3n} \\
      \vdots & \vdots & \ddots & \vdots \\
      a_{n1} & a_{n3} & \dots & a_{nn}
    \end{vmatrix}
    + \dots 
    \pm a_{1n}
    \begin{vmatrix}
      a_{21} & a_{22} & \dots & a_{2(n-1)} \\
      a_{31} & a_{32} & \dots & a_{3(n-1)} \\
      \vdots & \vdots & \ddots & \vdots \\
      a_{n1} & a_{n2} & \dots & a_{n(n-1)}
    \end{vmatrix}
  \end{align}

In short, the determinant of a matrix \mathbf{A} has the value


    {
    \det(\mathbf{A}) = \sum^n_{j=1} (-1)^{1+j} a_{1j} M_{1j}
    }

where M_{ij} is the determinant of the submatrix of \mathbf{A} formed by eliminating row i and column j from \mathbf{A}.

Some useful identities involving the determinant are given below.



            \det(\mathbf{A}) = \det(\mathbf{A}^T)~.

            \det(\lambda\mathbf{A}) = \lambda^n\det(\mathbf{A})  \implies
            \det(-\mathbf{A}) = (-1)^n\det(\mathbf{A}) ~.

            \det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A})\det(\mathbf{B})~.

If you think you understand determinants, take the quiz.

Inverse of a matrix

Let \mathbf{A} be a n \times n matrix. The inverse of \mathbf{A} is denoted by \mathbf{A}^{-1} and is defined such that


    {
    \mathbf{A} \mathbf{A}^{-1} = \mathbf{I}
    }

where \mathbf{I} is the n \times n identity matrix.

The inverse exists only if \det(\mathbf{A}) \ne 0. A singular matrix does not have an inverse.

An important identity involving the inverse is


    {
    (\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1} \mathbf{A}^{-1},
    }

since this leads to: 
    {
    (\mathbf{A} \mathbf{B})^{-1} (\mathbf{A} \mathbf{B})
    = (\mathbf{B}^{-1} \mathbf{A}^{-1}) (\mathbf{A} \mathbf{B} )
    = \mathbf{B}^{-1} \mathbf{A}^{-1} \mathbf{A} \mathbf{B} 
    = \mathbf{B}^{-1} (\mathbf{A}^{-1} \mathbf{A}) \mathbf{B} 
    = \mathbf{B}^{-1} \mathbf{I} \mathbf{B} 
    = \mathbf{B}^{-1} \mathbf{B} 
    = \mathbf{I}.
    }

Some other identities involving the inverse of a matrix are given below.


determinant of its inverse.


            \det(\mathbf{A}) = \cfrac{1}{\det(\mathbf{A}^{-1})}~.

is equal to the original matrix.


            \det(\mathbf{B} \mathbf{A} \mathbf{B}^{-1}) = \det(\mathbf{A}) ~.

We usually use numerical methods such as Gaussian elimination to compute the inverse of a matrix.

Eigenvalues and eigenvectors

A thorough explanation of this material can be found at Eigenvalue, eigenvector and eigenspace. However, for further study, let us consider the following examples:

Which vector is an eigenvector for 
    \mathbf{A} ?

We have 
    \mathbf{A}\mathbf{v} = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}\begin{bmatrix}
      6 \\ -5
    \end{bmatrix} = \begin{bmatrix}
      -24 \\ 20
    \end{bmatrix} = -4\begin{bmatrix}
      6 \\ -5
    \end{bmatrix} , and 
    \mathbf{A}\mathbf{t} = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}\begin{bmatrix}
      7 \\ 4
    \end{bmatrix} = \begin{bmatrix}
      31 \\ 43
    \end{bmatrix}~.

Thus, 
    \mathbf{v} is an eigenvector.

We have that since 
    \mathbf{A}\mathbf{u} = \begin{bmatrix} -3 & -3 \\ 1 & 8 \end{bmatrix}\begin{bmatrix}
      1 \\ 4
    \end{bmatrix} = \begin{bmatrix}
      -15 \\ 33
    \end{bmatrix} ,  \mathbf{u} = \begin{bmatrix}
      1 \\ 4
    \end{bmatrix} is not an eigenvector for 
    \mathbf{A} = \begin{bmatrix} -3 & -3 \\ 1 & 8 \end{bmatrix}~.

This article is issued from Wikiversity - version of the Thursday, November 07, 2013. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.