Nonlinear finite elements/Homework 5/Solutions/Problem 1

< Nonlinear finite elements < Homework 5 < Solutions

Problem 1: Nonlinear Beam Bending

Given:

The differential equations governing the bending of straight beams are


 \begin{align}
 \cfrac{dN_{xx}}{dx} + f(x) & = 0 \\
 \cfrac{dV}{dx} + q(x) & = 0 \\
 \cfrac{dM_{xx}}{dx} -V + N_{xx}\cfrac{dw_0}{dx} & = 0
 \end{align}

Solution

Part 1

Show that the weak forms of these equations can be written as

\begin{align}
   \int_{x_a}^{x_b} \cfrac{dv_1}{dx}N_{xx}~dx & =
   \int_{x_a}^{x_b} v_1 f~dx + \left.v_1 N_{xx}\right|_{x_a}^{x_b}\\
   \int_{x_a}^{x_b} \left[
   \cfrac{dv_2}{dx}\left(\cfrac{dw_0}{dx}N_{xx}\right) -
   \cfrac{d^2v_2}{dx^2}M_{xx}\right]~dx & =
   \int_{x_a}^{x_b} v_2 q~dx +
   \left.v_2\left(\cfrac{dw_0}{dx}N_{xx}+\cfrac{dM_{xx}}{dx}\right)
   \right|_{x_a}^{x_b} -
   \left.\cfrac{dv_2}{dx}M_{xx} \right|_{x_a}^{x_b}
 \end{align}

First we get rid of the shear force term by combining the second and third equations to get

\begin{align}
  \cfrac{dN_{xx}}{dx} + f(x) & = 0 \text{(1)} \qquad \\
  \cfrac{d^2M_{xx}}{dx^2} + q(x) +
  \cfrac{d}{dx}\left(N_{xx}\cfrac{dw_0}{dx}\right) & = 0
  \text{(2)} \qquad 
\end{align}

Let v_1 be the weighting function for equation (1) and let v_2 be the weighting function for equation (2).

Then the weak forms of the two equations are

\begin{align}
  \int_{x_a}^{x_b} v_1\left(\cfrac{dN_{xx}}{dx} + f(x)\right)~dx
  & = 0 \text{(3)} \qquad \\
  \int_{x_a}^{x_b} v_2\left[\cfrac{d^2M_{xx}}{dx^2} + q(x) +
  \cfrac{d}{dx}\left(N_{xx}\cfrac{dw_0}{dx}\right)\right]~dx & = 0
  \text{(4)} \qquad 
\end{align}

To get the symmetric weak forms, we integrate by parts (even though the symmetry is not obvious at this stage) to get

\begin{align}
  \left.(v_1~N_{xx})\right|_{x_a}^{x_b} & -
  \int_{x_a}^{x_b} \cfrac{dv_1}{dx} N_{xx}~dx +
  \int_{x_a}^{x_b} v_1~f(x)~dx
  = 0 \text{(5)} \qquad \\
  \left.\left(v_2~\cfrac{dM_{xx}}{dx}\right)\right|_{x_a}^{x_b} & -
  \int_{x_a}^{x_b} \cfrac{dv_2}{dx}\cfrac{dM_{xx}}{dx}~dx +
  \int_{x_a}^{x_b} v_2~q(x)~dx + \\
  & \left.\left(v_2~N_{xx}\cfrac{dw_0}{dx}\right)\right|_{x_a}^{x_b} -
  \int_{x_a}^{x_b} \cfrac{dv_2}{dx}\left(N_{xx}\cfrac{dw_0}{dx}\right)~dx
  = 0
  \text{(6)} \qquad 
\end{align}

Integrate equation (6) again by parts, and get

\begin{align}
  \left.\left(v_2~\cfrac{dM_{xx}}{dx}\right)\right|_{x_a}^{x_b} & -
  \left.\left(\cfrac{dv_2}{dx}~M_{xx}\right)\right|_{x_a}^{x_b} +
  \int_{x_a}^{x_b} \cfrac{d^2v_2}{dx^2}M_{xx}~dx +
  \int_{x_a}^{x_b} v_2~q(x)~dx + \\
  & \left.\left(v_2~N_{xx}\cfrac{dw_0}{dx}\right)\right|_{x_a}^{x_b} -
  \int_{x_a}^{x_b} \cfrac{dv_2}{dx}\left(N_{xx}\cfrac{dw_0}{dx}\right)~dx
  = 0
  \text{(7)} \qquad 
\end{align}

Collect terms and rearrange equations (5) and (7) to get

\begin{align}
  \int_{x_a}^{x_b} \cfrac{dv_1}{dx} N_{xx}~dx & =
  \int_{x_a}^{x_b} v_1~f(x)~dx + \left.(v_1~N_{xx})\right|_{x_a}^{x_b}
  \text{(8)} \qquad \\
  \int_{x_a}^{x_b} \left[
  \cfrac{dv_2}{dx}\left(N_{xx}\cfrac{dw_0}{dx}\right) -
  \cfrac{d^2v_2}{dx^2}M_{xx}\right]~dx & =
  \int_{x_a}^{x_b} v_2~q(x)~dx +\\
  &\left[\left(v_2~\cfrac{dM_{xx}}{dx}\right) -
  \left(\cfrac{dv_2}{dx}~M_{xx}\right) +
  \left(v_2~N_{xx}\cfrac{dw_0}{dx}\right)\right]_{x_a}^{x_b}
  \text{(9)} \qquad 
  \end{align}

Rewriting the equations, we get


  \begin{align}
  \int_{x_a}^{x_b} \cfrac{dv_1}{dx} N_{xx}~dx & =
  \int_{x_a}^{x_b} v_1 f~dx + \left.v_1 N_{xx}\right|_{x_a}^{x_b} \\
  \int_{x_a}^{x_b} \left[
  \cfrac{dv_2}{dx}\left(N_{xx}\cfrac{dw_0}{dx}\right) -
  \cfrac{d^2v_2}{dx^2}M_{xx}\right]~dx & =
  \int_{x_a}^{x_b} v_2 q~dx +
  \left[v_2\left(\cfrac{dM_{xx}}{dx} + N_{xx}\cfrac{dw_0}{dx}\right)
  \right]_{x_a}^{x_b} -
  \left[\cfrac{dv_2}{dx}~M_{xx}\right]_{x_a}^{x_b}
  \end{align}
  \text{(10)} \qquad

Hence shown.

Part 2

The von Karman strains are related to the displacements by

\begin{align}
  \varepsilon_{xx} & = \varepsilon^0_{xx} + z\varepsilon^1_{xx} \\
  \varepsilon^0_{xx} & = \cfrac{du_0}{dx} +
  \frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2 \\
  \varepsilon^1_{xx} & = -\cfrac{d^2w_0}{dx^2}
  \end{align}

The stress and moment resultants are defined as

\begin{align}
  N_{xx} & = \int_A \sigma_{xx}~ dA \\
  M_{xx} & = \int_A z\sigma_{xx}~ dA
\end{align}

For a linear elastic material, the stiffnesses of the beam in extension and bending are defined as

\begin{align}
  A_{xx} & = \int_A E~dA\qquad \leftarrow \qquad
  \text{extensional stiffness}\\
  B_{xx} & = \int_A zE~dA\qquad \leftarrow \qquad
  \text{extensional-bending stiffness}\\
  D_{xx} & = \int_A z^2E~dA\qquad \leftarrow \qquad
  \text{bending stiffness}
  \end{align}

where E is the Young's modulus of the material.

Derive expressions for N_{xx} and M_{xx} in terms of the displacements u_0 and w_0 and the extensional and bending stiffnesses of the beam assuming a linear elastic material.

The stress-strain relations for an isotropic linear elastic material are


   \begin{bmatrix}
   \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\
   \sigma_{yz} \\ \sigma_{zx} \\ \sigma_{xy}
   \end{bmatrix}
   = \cfrac{E}{(1+\nu)(1-2\nu)}
   \begin{bmatrix}
   1-\nu & \nu & \nu & 0 & 0 & 0 \\
   \nu & 1-\nu & \nu & 0 & 0 & 0 \\
   \nu & \nu & 1-\nu & 0 & 0 & 0 \\
  0& 0 & 0 & (1-2\nu) & 0 & 0 \\
  0& 0 & 0 & 0 & (1-2\nu) & 0 \\
  0& 0 & 0 & 0 & 0 & (1-2\nu)
   \end{bmatrix}
   \begin{bmatrix}
   \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\
   \varepsilon_{yz} \\ \varepsilon_{zx} \\ \varepsilon_{xy}
   \end{bmatrix}

Since all strains other than \varepsilon_{xx} are zero, the above equations reduce to


   \sigma_{xx} = \cfrac{E(1-\nu)}{(1+\nu)(1-2\nu)}\varepsilon_{xx};
   \qquad
   \sigma_{yy} = \cfrac{E\nu}{(1+\nu)(1-2\nu)}\varepsilon_{xx};
   \qquad
   \sigma_{zz} = \cfrac{E\nu}{(1+\nu)(1-2\nu)}\varepsilon_{xx}~.

If we ignore the stresses \sigma_{yy} and \sigma_{zz}, the only allowable value of \nu is zero. Then the stress-strain relations become


   \sigma_{xx} = E\varepsilon_{xx} ~.

Plugging this relation into the stress and moment of stress resultant equations, we get

\begin{align}
   N_{xx} & = \int_A E\varepsilon_{xx}~ dA \\
   M_{xx} & = \int_A zE\varepsilon_{xx}~ dA
 \end{align}

Plugging in the relations for the strain we get

\begin{align}
   N_{xx} & = \int_A E(\varepsilon^0_{xx} + z\varepsilon^1_{xx})~ dA
    = \int_A E\varepsilon^0_{xx}~dA + \int_A zE\varepsilon^1_{xx}~dA \\
   M_{xx} & = \int_A zE(\varepsilon^0_{xx} + z\varepsilon^1_{xx})~ dA
    = \int_A zE\varepsilon^0_{xx}~dA + \int_A z^2E\varepsilon^1_{xx}~dA ~.
 \end{align}

Since both \varepsilon^0_{xx} and \varepsilon^1_{xx} are independent of y and z, we can take these quantities outside the integrals and get

\begin{align}
   N_{xx} & = \varepsilon^0_{xx}\int_A E~dA +
    \varepsilon^1_{xx}\int_A zE~dA \\
   M_{xx} & = \varepsilon^0_{xx}\int_A zE~dA +
    \varepsilon^1_{xx}\int_A z^2E~dA ~.
 \end{align}

Using the definitions of the extensional, extensional-bending, and bending stiffness, we can then write

\begin{align}
   N_{xx} & = \varepsilon^0_{xx} A_{xx} +
    \varepsilon^1_{xx} B_{xx} \\
   M_{xx} & = \varepsilon^0_{xx} B_{xx} +
    \varepsilon^1_{xx} D_{xx} ~.
 \end{align}

To write these relations in terms of u_0 and w_0 we substitute the expressions for the von Karman strains to get


 \begin{align}
   N_{xx} & =
    \left[\cfrac{du_0}{dx} + \frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2\right]
     A_{xx} -\cfrac{d^2w_0}{dx^2} B_{xx} \\
   M_{xx} & =
     \left[\cfrac{du_0}{dx} + \frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2\right]
     B_{xx} -\cfrac{d^2w_0}{dx^2} D_{xx} ~.
 \end{align}

These are the expressions of the resultants in terms of the displacements.

Part 3

Express the weak forms in terms of the displacements and the extensional and bending stiffnesses.

The weak form equations are

\begin{align}
   \int_{x_a}^{x_b} \cfrac{dv_1}{dx} N_{xx}~dx & =
     \int_{x_a}^{x_b} v_1 f~dx + \left.v_1 N_{xx}\right|_{x_a}^{x_b}
       \text{(11)} \qquad \\
   \int_{x_a}^{x_b} \left[
    \cfrac{dv_2}{dx}\left(N_{xx}\cfrac{dw_0}{dx}\right) -
      \cfrac{d^2v_2}{dx^2}M_{xx}\right]~dx & =
      \int_{x_a}^{x_b} v_2 q~dx +
      \left[v_2\left(\cfrac{dM_{xx}}{dx} + N_{xx}\cfrac{dw_0}{dx}\right)
      \right]_{x_a}^{x_b} -
     \left[\cfrac{dv_2}{dx}~M_{xx}\right]_{x_a}^{x_b}
  \text{(12)} \qquad 
   \end{align}

At this stage we make two more assumptions:

  1. The elastic modulus is constant throughout the cross-section.
  2. The x-axis passes through the centroid of the cross-section.

From the first assumption, we have


  B_{xx} = E \int_A z~dA ~.

From the second assumption, we get


   \int_A z~dA = 0 \qquad \implies \qquad B_{xx} = 0 ~.

Then the relations for N_{xx} and M_{xx} reduce to

\begin{align}
   N_{xx} & =
    \left[\cfrac{du_0}{dx} + \frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2\right]
     A_{xx} \text{(13)} \qquad \\
   M_{xx} & =- \cfrac{d^2w_0}{dx^2} D_{xx} \text{(14)} \qquad~.
 \end{align}

Let us first consider equation (11). Plugging in the expression for N_{xx} we get


  \int_{x_a}^{x_b} \cfrac{dv_1}{dx}
    \left[\cfrac{du_0}{dx} + \frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2\right]
   A_{xx}~dx =
     \int_{x_a}^{x_b} v_1 f~dx + \left.v_1 N_{xx}\right|_{x_a}^{x_b}

We can also write the above in terms of virtual displacements by defining \delta u_0 := v_1, Q_1 := -N_{xx}(x_a), and Q_4 := N_{xx}(x_b). Then we get


 \int_{x_a}^{x_b} \cfrac{d(\delta u_0)}{dx}
\left[\cfrac{du_0}{dx} + \frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2\right]
 A_{xx}~dx =
 \int_{x_a}^{x_b} (\delta u_0) f~dx + \delta u_0(x_a) Q_1 +
 \delta u_0(x_b) Q_4 ~.

Next, we do the same for equation (12). Plugging in the expressions for N_{xx} and M_{xx}, we get

\begin{align}
   \int_{x_a}^{x_b} \left\{\cfrac{dv_2}{dx}\left(\left[\cfrac{du_0}{dx} + \cfrac{1}{2}~\left(\cfrac{dw_0}{dx}\right)^2\right] A_{xx} \cfrac{dw_0}{dx}\right)
     \right. & +
     \left.\cfrac{d^2 v_2}{dx^2} \left(\cfrac{d^2 w_0}{dx^2}\right) D_{xx} \right\}~dx=
     \int_{x_a}^{x_b} v_2 q~dx +\\
     & \left[v_2\left(\cfrac{dM_{xx}}{dx} + N_{xx}\cfrac{dw_0}{dx}\right)\right]_{x_a}^{x_b} -
     \left[\cfrac{dv_2}{dx}~M_{xx}\right]_{x_a}^{x_b}
     \end{align}

We can write the above in terms of the virtual displacements and the generalized forces by defining

\begin{align}
   \delta w_0 & := v_2 \\
   \delta \theta & := \cfrac{dv_2}{dx} \\
   Q_2 & := -\left[\cfrac{dM_{xx}}{dx} + N_{xx}\cfrac{dw_0}{dx}\right]_{x_a} \\
   Q_5 & := \left[\cfrac{dM_{xx}}{dx} + N_{xx}\cfrac{dw_0}{dx}\right]_{x_b} \\
   Q_3 & := -M_{xx} (x_a) \\
   Q_6 & := M_{xx} (x_b)
 \end{align}

to get


 \begin{align}
   \int_{x_a}^{x_b} \left\{\cfrac{d(\delta w_0)}{dx} \right. &
   \left[\cfrac{du_0}{dx} + \cfrac{1}{2}~\left(\cfrac{dw_0}{dx}\right)^2\right] \cfrac{dw_0}{dx} A_{xx} +
   \left.\cfrac{d^2(\delta w_0)}{dx^2} \left(\cfrac{d^2w_0}{dx^2}\right) D_{xx} \right\}~dx= \\
  & \int_{x_a}^{x_b} (\delta w_0) q~dx +
    \delta w_0(x_a) Q_2 + \delta w_0(x_b) Q_5 +
    \delta \theta(x_a) Q_3 +
    \delta \theta(x_b) Q_6 ~.
 \end{align}

Part 4

Assume that the approximate solutions for the axial displacement and the transverse deflection over a two noded element are given by

\begin{align}
   u_0(x) & =u_1 \psi_1(x) + u_2 \psi_2(x) \text{(15)} \qquad \\
   w_0(x) & =w_1 \phi_1(x) + \theta_1 \phi_2(x) + w_2 \phi_3(x) +
 \theta_2 \phi_4(x) \text{(16)} \qquad 
 \end{align}

where \theta = -(dw_0/dx).

Compute the element stiffness matrix for the element.

The weak forms of the governing equations are

\begin{align}
   \int_{x_a}^{x_b} \cfrac{d(\delta u_0)}{dx} &
    \left[\cfrac{du_0}{dx} + \frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2\right]
   A_{xx}~dx =
     \int_{x_a}^{x_b} (\delta u_0) f~dx + \delta u_0(x_a) Q_1 +
     \delta u_0(x_b) Q_4 \text{(17)} \qquad \\
     \int_{x_a}^{x_b} \left\{\cfrac{d(\delta w_0)}{dx} \right. &
     \left[\cfrac{du_0}{dx} + \cfrac{1}{2}~\left(\cfrac{dw_0}{dx}\right)^2\right] \cfrac{dw_0}{dx} A_{xx} +
     \left.\cfrac{d^2(\delta w_0)}{dx^2} \left(\cfrac{d^2w_0}{dx^2}\right) D_{xx} \right\}~dx =
\\
  & \int_{x_a}^{x_b} (\delta w_0) q~dx +
    \delta w_0(x_a) Q_2 + \delta w_0(x_b) Q_5 +
    \delta \theta(x_a) Q_3 +
    \delta \theta(x_b) Q_6 ~. \text{(18)} \qquad 
 \end{align}

Let us first write the approximate solutions as

\begin{align}
   u_0(x) & = \sum_{j=1}^2 u_j \psi_j \text{(19)} \qquad \\
   w_0(x) & = \sum_{j=1}^4 d_j \phi_j \text{(20)} \qquad 
 \end{align}

where d_j are generalized displacements and


   \{d_1, d_2, d_3, d_4\} \equiv \{w_1, \theta_1, w_2, \theta_2\} ~.

To formulate the finite element system of equations, we substitute the expressions from u_0 and w_0 from equations (19) and (20) into the weak form, and substitute the shape functions \psi_i for \delta u_0, \phi_i for \delta w_0.

For the first equation (17) we get


   \int_{x_a}^{x_b} \cfrac{d\psi_i}{dx}\left[
   \left(\sum_{j=1}^2 u_j\cfrac{d\psi_j}{dx}\right) +
   \frac{1}{2}\cfrac{dw_0}{dx}
   \left(\sum_{j=1}^4 d_j\cfrac{d\phi_j}{dx}\right)\right]
   A_{xx}~dx =
   \int_{x_a}^{x_b} \psi_i f~dx + \psi_i(x_a) Q_1 + \psi_i(x_b) Q_4 ~.

After reorganizing, we have


   \begin{align}
   \sum_{j=1}^{2}
   \left[\int_{x_a}^{x_b} A_{xx}\cfrac{d\psi_i}{dx}\cfrac{d\psi_j}{dx}~dx\right]u_j & +
   \sum_{j=1}^{4}
   \left[\frac{1}{2} \int_{x_a}^{x_b} \left(A_{xx}\cfrac{dw_0}{dx}\right)
   \cfrac{d\psi_i}{dx} \cfrac{d\phi_j}{dx}~dx\right]d_j = \\
   & \int_{x_a}^{x_b} \psi_i f~dx + \psi_i(x_a) Q_1 + \psi_i(x_b) Q_4 ~.
 \end{align}

We can write the above as


   \sum_{j=1}^{2} K_{ij}^{11} u_j + \sum_{j=1}^{4} K_{ij}^{12} d_j = F_i^1

where i = 1, 2 and


 \begin{align}
   K_{ij}^{11} & = \int_{x_a}^{x_b} A_{xx}\cfrac{d\psi_i}{dx}\cfrac{d\psi_j}{dx}~dx \\
   K_{ij}^{12} & = \frac{1}{2} \int_{x_a}^{x_b} \left(A_{xx}\cfrac{dw_0}{dx}\right)
     \cfrac{d\psi_i}{dx} \cfrac{d\phi_j}{dx}~dx\\
   F_i^1 & = \int_{x_a}^{x_b} \psi_i f~dx + \psi_i(x_a) Q_1 + \psi_i(x_b) Q_4 ~.
 \end{align}

For the second equation (18) we get


 \begin{align}
   \int_{x_a}^{x_b} \left\{\cfrac{d\phi_i}{dx} \right. &
     \left[\left(\sum_{j=1}^{2} u_j\cfrac{d\psi_j}{dx}\right) +
     \frac{1}{2}\cfrac{dw_0}{dx}
     \left(\sum_{j=1}^{4} d_j\cfrac{d\phi_j}{dx}\right)\right]
     \cfrac{dw_0}{dx}A_{xx} +
     \left.\cfrac{d^2\phi_i}{dx^2}
     \left(\sum_{j=1}^{4} d_j \cfrac{d^2\phi_j}{dx^2}\right)D_{xx} \right\}~dx =
   \\
  & \int_{x_a}^{x_b} \phi_i q~dx +
    \phi_i(x_a) Q_2 + \phi_i(x_b) Q_5 +
    \cfrac{d\phi_i}{dx}(x_a) Q_3 +
    \cfrac{d\phi_i}{dx}(x_b) Q_6
 \end{align}

After rearranging we get


 \begin{align}
   \sum_{j=1}^{2} \left[ \int_{x_a}^{x_b} \left(A_{xx} \cfrac{dw_0}{dx}\right)
    \cfrac{d\phi_i}{dx}\cfrac{d\psi_j}{dx}~dx \right] u_j& +
     \sum_{j=1}^{4} \left\{\frac{1}{2}
     \int_{x_a}^{x_b} \left[A_{xx} \left(\cfrac{dw_0}{dx}\right)^2\right]
     \cfrac{d\phi_i}{dx}\cfrac{d\phi_j}{dx}~dx \right\} d_j\\
  & + \sum_{j=1}^{4} \left( \int_{x_a}^{x_b} D_{xx}\cfrac{d^2\phi_i}{dx^2}\cfrac{d^2\phi_j}{dx^2}~dx
     \right) d_j =
 \\
  & \int_{x_a}^{x_b} \phi_i q~dx + \phi_i(x_a) Q_2 + \phi_i(x_b) Q_5 +
    \cfrac{d\phi_i}{dx}(x_a) Q_3 + \cfrac{d\phi_i}{dx}(x_b) Q_6
 \end{align}

We can write the above as


   \sum_{j=1}^{2} K_{ij}^{21} u_j + \sum_{j=1}^{4} K_{ij}^{22} d_j = F_i^2

where i = 1, 2, 3, 4 and


 \begin{align}
   K_{ij}^{21} & = \int_{x_a}^{x_b} \left(A_{xx} \cfrac{dw_0}{dx}\right)
     \cfrac{d\phi_i}{dx}\cfrac{d\psi_j}{dx}~dx\\
   K_{ij}^{22} & = \int_{x_a}^{x_b}\left\{
    \frac{1}{2}\left[A_{xx} \left(\cfrac{dw_0}{dx}\right)^2\right]
   \cfrac{d\phi_i}{dx}\cfrac{d\phi_j}{dx} +
   D_{xx}\cfrac{d^2\phi_i}{dx^2}\cfrac{d^2\phi_j}{dx^2}\right\}~dx \\
   F_i^2 & = \int_{x_a}^{x_b} \phi_i q~dx + \phi_i(x_a) Q_2 + \phi_i(x_b) Q_5 +
    \cfrac{d\phi_i}{dx}(x_a) Q_3 + \cfrac{d\phi_i}{dx}(x_b) Q_6 ~.
 \end{align}

In matrix form, we can write


   \mathbf{K} =
   \begin{bmatrix}
     K_{11}^{11} & K_{12}^{11} & \vdots & K_{11}^{12} & K_{12}^{12} &
      K_{13}^{12} & K_{14}^{12} \\
     K_{21}^{11} & K_{22}^{11} & \vdots & K_{21}^{12} & K_{22}^{12} &
      K_{23}^{12} & K_{24}^{12} \\
      &&\dots &&&&\\
     K_{11}^{21} & K_{12}^{21} & \vdots & K_{11}^{22} & K_{12}^{22} &
      K_{13}^{12} & K_{14}^{12} \\
     K_{21}^{21} & K_{22}^{21} & \vdots & K_{21}^{22} & K_{22}^{22} &
      K_{23}^{12} & K_{24}^{12} \\
     K_{31}^{21} & K_{32}^{21} & \vdots & K_{31}^{22} & K_{32}^{22} &
      K_{33}^{22} & K_{34}^{22} \\
     K_{41}^{21} & K_{42}^{21} & \vdots & K_{41}^{22} & K_{42}^{22} &
      K_{43}^{22} & K_{44}^{22} \\
   \end{bmatrix}

or


 \mathbf{K} =
 \begin{bmatrix}
 \mathbf{K}^{11} & \vdots & \mathbf{K}^{12} \\
 & \vdots &\\
 \mathbf{K}^{21} & \vdots & \mathbf{K}^{22}
 \end{bmatrix} ~.

The finite element system of equations can then be written as

\text{(21)} \qquad 
 \begin{bmatrix}
 K_{11}^{11} & K_{12}^{11} & \vdots & K_{11}^{12} & K_{12}^{12} &
K_{13}^{12} & K_{14}^{12} \\
 K_{21}^{11} & K_{22}^{11} & \vdots & K_{21}^{12} & K_{22}^{12} &
K_{23}^{12} & K_{24}^{12} \\
&&\dots &&&&\\
 K_{11}^{21} & K_{12}^{21} & \vdots & K_{11}^{22} & K_{12}^{22} &
K_{13}^{12} & K_{14}^{12} \\
 K_{21}^{21} & K_{22}^{21} & \vdots & K_{21}^{22} & K_{22}^{22} &
K_{23}^{12} & K_{24}^{12} \\
 K_{31}^{21} & K_{32}^{21} & \vdots & K_{31}^{22} & K_{32}^{22} &
K_{33}^{22} & K_{34}^{22} \\
 K_{41}^{21} & K_{42}^{21} & \vdots & K_{41}^{22} & K_{42}^{22} &
K_{43}^{22} & K_{44}^{22} \\
 \end{bmatrix}
 \begin{bmatrix}
 u_1 \\ u_2 \\\\ d_1 \\ d_2 \\ d_3 \\ d_4
 \end{bmatrix}
 =
 \begin{bmatrix}
 F_1^1 \\ F_2^1 \\\\ F_1^2 \\ F_2^2 \\ F_3^2 \\ F_4^2
 \end{bmatrix}

or


 \begin{bmatrix}
 \mathbf{K}^{11} & \vdots & \mathbf{K}^{12} \\
 & \vdots &\\
 \mathbf{K}^{21} & \vdots & \mathbf{K}^{22}
 \end{bmatrix}
 \begin{bmatrix}
 \mathbf{u} \\\\ \mathbf{d}
 \end{bmatrix}
 =
 \begin{bmatrix}
 \mathbf{F}^1 \\ \\ \mathbf{F}^2
 \end{bmatrix}
 ~.

Part 5

Show the alternate procedure by which the element stiffness matrix can be made symmetric.

The stiffness matrix is unsymmetric because \mathbf{K}^{12} contains a factor of 1/2 while \mathbf{K}^{21} does not. The expressions of these terms are

\begin{align}
 K_{ij}^{12} & = \frac{1}{2} \int_{x_a}^{x_b} \left(A_{xx}\cfrac{dw_0}{dx}\right)
 \cfrac{d\psi_i}{dx} \cfrac{d\phi_j}{dx}~dx, \qquad
 i=1,2, ~\text{and}~ j=1,2,3,4 \\
 K_{ij}^{21} & = \int_{x_a}^{x_b} \left(A_{xx} \cfrac{dw_0}{dx}\right)
 \cfrac{d\phi_i}{dx}\cfrac{d\psi_j}{dx}~dx, \qquad
 i=1,2,3,4, ~\text{and}~ j=1,2 ~.
 \end{align}

To get a symmetric stiffness matrix, we write equation (18) as


 \begin{align}
 \int_{x_a}^{x_b} \left\{\cfrac{d(\delta w_0)}{dx} \right. &
 \left[\frac{1}{2}\cfrac{du_0}{dx}+\frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2+
 {\frac{1}{2}\cfrac{du_0}{dx}}\right] \cfrac{dw_0}{dx} A_{xx} +
\left.\cfrac{d^2(\delta w_0)}{dx^2} \left(\cfrac{d^2w_0}{dx^2}\right) D_{xx} \right\}~dx = \\
 & \int_{x_a}^{x_b} (\delta w_0) q~dx +
\delta w_0(x_a) Q_2 + \delta w_0(x_b) Q_5 +
\delta \theta(x_a) Q_3 +
\delta \theta(x_b) Q_6 ~.
 \end{align}

The quantity is green is assumed to be known from a previous iteration and adds to the \mathbf{K}^{22} terms.

Repeating the procedure used in the previous question


 \begin{align}
 \int_{x_a}^{x_b} \left\{\cfrac{d\phi_i}{dx} \right. &
 \left[\frac{1}{2}\left(\sum_{j=1}^{2} u_j\cfrac{d\psi_j}{dx}\right) +
 \frac{1}{2}\cfrac{dw_0}{dx}
 \left(\sum_{j=1}^{4} d_j\cfrac{d\phi_j}{dx}\right)
\right]
 \cfrac{dw_0}{dx}A_{xx} +
 {
 \frac{1}{2}\cfrac{d\phi_i}{dx}
 \cfrac{du_0}{dx}\left(\sum_{j=1}^{4} d_j\cfrac{d\phi_j}{dx}\right)A_{xx} +
 }\\
&\left.\cfrac{d^2\phi_i}{dx^2}
 \left(\sum_{j=1}^{4} d_j \cfrac{d^2\phi_j}{dx^2}\right)D_{xx} \right\}~dx =
 \\
& \int_{x_a}^{x_b} \phi_i q~dx +
\phi_i(x_a) Q_2 + \phi_i(x_b) Q_5 +
\cfrac{d\phi_i}{dx}(x_a) Q_3 +
\cfrac{d\phi_i}{dx}(x_b) Q_6
 \end{align}

After rearranging we get


 \begin{align}
 \sum_{j=1}^{2} & \left[\frac{1}{2} \int_{x_a}^{x_b} \left(A_{xx} \cfrac{dw_0}{dx}\right)
\cfrac{d\phi_i}{dx}\cfrac{d\psi_j}{dx}~dx \right] u_j +
 \sum_{j=1}^{4} \left\{\frac{1}{2}
 \int_{x_a}^{x_b} \left[A_{xx} \left(\cfrac{dw_0}{dx}\right)^2\right]
 \cfrac{d\phi_i}{dx}\cfrac{d\phi_j}{dx}~dx \right\} d_j + \\
& {
 \sum_{j=1}^{4} \left[\frac{1}{2}\int_{x_a}^{x_b} A_{xx}\cfrac{du_0}{dx}\cfrac{d\phi_i}{dx}
\cfrac{d\phi_j}{dx}~dx\right] d_j
 }
 + \sum_{j=1}^{4} \left( \int_{x_a}^{x_b} D_{xx}\cfrac{d^2\phi_i}{dx^2}\cfrac{d^2\phi_j}{dx^2}~dx
 \right) d_j =
 \\
& \int_{x_a}^{x_b} \phi_i q~dx + \phi_i(x_a) Q_2 + \phi_i(x_b) Q_5 +
\cfrac{d\phi_i}{dx}(x_a) Q_3 + \cfrac{d\phi_i}{dx}(x_b) Q_6
 \end{align}

We can write the above as


 \sum_{j=1}^{2} K_{ij}^{21} u_j + \sum_{j=1}^{4} K_{ij}^{22} d_j = F_i^2

where i = 1, 2, 3, 4 and


 \begin{align}
 K_{ij}^{21} & = \frac{1}{2} \int_{x_a}^{x_b} \left(A_{xx} \cfrac{dw_0}{dx}\right)
 \cfrac{d\phi_i}{dx}\cfrac{d\psi_j}{dx}~dx\\
 K_{ij}^{22} & = \int_{x_a}^{x_b}\left\{
 \frac{1}{2} A_{xx}
 \left[\cfrac{du_0}{dx}+\left(\cfrac{dw_0}{dx}\right)^2\right]
 \cfrac{d\phi_i}{dx}\cfrac{d\phi_j}{dx} +
D_{xx}\cfrac{d^2\phi_i}{dx^2}\cfrac{d^2\phi_j}{dx^2}\right\}~dx \\
 F_i^2 & = \int_{x_a}^{x_b} \phi_i q~dx + \phi_i(x_a) Q_2 + \phi_i(x_b) Q_5 +
\cfrac{d\phi_i}{dx}(x_a) Q_3 + \cfrac{d\phi_i}{dx}(x_b) Q_6 ~.
 \end{align}

This gives us a symmetric stiffness matrix.

Part 6

Derive the element tangent stiffness matrix for the element.

Equation (21) can be written as


 \mathbf{K}(\mathbf{U}) \mathbf{U} = \mathbf{F}

where

\begin{align}
 U_1 & = u_1, ~ U_2= u_2, ~ U_3= d_1, ~
 U_4= d_2, ~ U_5= d_3, ~ U_6= d_4 \\
 F_1 & = F^1_1, ~ F_2= F^1_2, ~ F_3= F^2_1, ~
 F_4= F^2_2, ~ F_5= F^2_3, ~ F_6= F^2_4
 \end{align}

The residual is


 \mathbf{R} = \mathbf{K} \mathbf{U} - \mathbf{F} ~.

For Newton iterations, we use the algorithm


 \mathbf{U}^{r+1} = \mathbf{U}^r - (\mathbf{T}^r)^{-1} \mathbf{R}^r

where the tangent stiffness matrix is given by


 \mathbf{T}^r = \frac{\partial \mathbf{R}^r}{\partial \mathbf{U}} ~.

The coefficients of the tangent stiffness matrix are given by


 T_{ij} = \frac{\partial R_i}{\partial U_j}, \qquad i=1 \dots 6, j=1 \dots 6~.

Recall that the finite element system of equations can be written as


 \begin{align}
 \sum_{p=1}^{2} K_{mp}^{11} u_p & + \sum_{q=1}^{4} K_{mq}^{12} d_q = F_m^1,
\qquad m=1,2 \\
 \sum_{p=1}^{2} K_{np}^{21} u_p & + \sum_{q=1}^{4} K_{nq}^{22} d_q = F_n^2,
\qquad n=1,2,3,4
 \end{align}

where the subscripts have been changed to avoid confusion.

Therefore, the residuals are


 \begin{align}
 R_m^1 & = \sum_{p=1}^{2} K_{mp}^{11} u_p + \sum_{q=1}^{4} K_{mq}^{12} d_q
 - F_m^1, \qquad m=1,2 \\
 R_n^2 & = \sum_{p=1}^{2} K_{np}^{21} u_p + \sum_{q=1}^{4} K_{nq}^{22} d_q
 - F_n^2, \qquad n=1,2,3,4 ~.
 \end{align}

The derivatives of the residuals with respect to the generalized displacements are


 \begin{align}
 T^{11}_{mk} = \frac{\partial R_m^1}{\partial u_k} & =
 \sum_{p=1}^{2} \frac{\partial }{\partial u_k}(K_{mp}^{11} u_p) +
 \sum_{q=1}^{4} \frac{\partial }{\partial u_k}(K_{mq}^{12} d_q) ,
 & & \qquad m=1,2; ~~k=1,2 \\
 T^{12}_{ml} = \frac{\partial R_m^1}{\partial d_l} & =
 \sum_{p=1}^{2} \frac{\partial }{\partial d_l}(K_{mp}^{11} u_p) +
 \sum_{q=1}^{4} \frac{\partial }{\partial d_l}(K_{mq}^{12} d_q) ,
 & & \qquad m=1,2; ~~l=1,2,3,4 \\
 T^{21}_{nk} = \frac{\partial R_n^2}{\partial u_k} & =
 \sum_{p=1}^{2} \frac{\partial }{\partial u_k}(K_{np}^{21} u_p) +
 \sum_{q=1}^{4} \frac{\partial }{\partial u_k}(K_{nq}^{22} d_q) ,
 & & \qquad n=1,2,3,4; ~~k=1,2 \\
 T^{22}_{nl} = \frac{\partial R_n^2}{\partial d_l} & =
 \sum_{p=1}^{2} \frac{\partial }{\partial d_l}(K_{np}^{21} u_p) +
 \sum_{q=1}^{4} \frac{\partial }{\partial d_l}(K_{nq}^{22} d_q) ,
 & & \qquad n=1,2,3,4; ~~l=1,2,3,4 ~.
 \end{align}

Differentiating, we get


 \begin{align}
 T^{11}_{mk} & =
 \sum_{p=1}^{2} \left(u_p\frac{\partial K_{mp}^{11}}{\partial u_k} +
K_{mp}^{11}\frac{\partial u_p}{\partial u_k}\right) +
 \sum_{q=1}^{4} \left(d_q\frac{\partial K_{mq}^{12}}{\partial u_k} +
K_{mq}^{12}\frac{\partial d_q}{\partial u_k}\right),
 & &\qquad m=1,2; ~~k=1,2 \\
 T^{12}_{ml} & =
 \sum_{p=1}^{2} \left(u_p\frac{\partial K_{mp}^{11}}{\partial d_l} +
K_{mp}^{11}\frac{\partial u_p}{\partial d_l}\right) +
 \sum_{q=1}^{4} \left(d_q\frac{\partial K_{mq}^{12}}{\partial d_l} +
K_{mq}^{12}\frac{\partial d_q}{\partial d_l}\right),
 & &\qquad m=1,2; ~~l=1,2,3,4 \\
 T^{21}_{nk} & =
 \sum_{p=1}^{2} \left(u_p\frac{\partial K_{np}^{21}}{\partial u_k} +
K_{np}^{21}\frac{\partial u_p}{\partial u_k}\right) +
 \sum_{q=1}^{4} \left(d_q\frac{\partial K_{nq}^{22}}{\partial u_k} +
K_{nq}^{22}\frac{\partial d_q}{\partial u_k}\right),
 & &\qquad n=1,2,3,4; ~~k=1,2 \\
 T^{22}_{nl} & =
 \sum_{p=1}^{2} \left(u_p\frac{\partial K_{np}^{21}}{\partial d_l} +
K_{np}^{21}\frac{\partial u_p}{\partial d_l}\right) +
 \sum_{q=1}^{4} \left(d_q\frac{\partial K_{nq}^{22}}{\partial d_l} +
K_{nq}^{22}\frac{\partial d_q}{\partial d_l}\right),
 & &\qquad n=1,2,3,4; l=1,2,3,4 ~.
 \end{align}

These equations can therefore be written as


 \begin{align}
 T^{11}_{mk} & = K^{11}_{mk} +
 \sum_{p=1}^{2} u_p\frac{\partial K_{mp}^{11}}{\partial u_k} +
 \sum_{q=1}^{4} d_q\frac{\partial K_{mq}^{12}}{\partial u_k},
 & &\qquad m=1,2; ~~k=1,2 \\
 T^{12}_{ml} & = K^{12}_{ml} +
 \sum_{p=1}^{2} u_p\frac{\partial K_{mp}^{11}}{\partial d_l} +
 \sum_{q=1}^{4} d_q\frac{\partial K_{mq}^{12}}{\partial d_l},
 & &\qquad m=1,2; ~~l=1,2,3,4 \\
 T^{21}_{nk} & = K^{21}_{nk} +
 \sum_{p=1}^{2} u_p\frac{\partial K_{np}^{21}}{\partial u_k} +
 \sum_{q=1}^{4} d_q\frac{\partial K_{nq}^{22}}{\partial u_k},
 & &\qquad n=1,2,3,4; ~~k=1,2 \\
 T^{22}_{nl} & = K^{22}_{nl} +
 \sum_{p=1}^{2} u_p\frac{\partial K_{np}^{21}}{\partial d_l} +
 \sum_{q=1}^{4} d_q\frac{\partial K_{nq}^{22}}{\partial d_l},
 & &\qquad n=1,2,3,4; l=1,2,3,4 ~.
 \end{align}

Now, the coefficients of \mathbf{K}^{11}, \mathbf{K}^{12}, and \mathbf{K}^{21} of the symmetric stiffness matrix are independent of u_1 and u_2. Also, the terms of \mathbf{K}^{11} are independent of the all the generalized displacements. Therefore, the above equations reduce to


 \begin{align}
 T^{11}_{mk} & = K^{11}_{mk},
 & &\qquad m=1,2; ~~k=1,2 \\
 T^{12}_{ml} & = K^{12}_{ml} +
 \sum_{q=1}^{4} d_q\frac{\partial K_{mq}^{12}}{\partial d_l},
 & & \qquad m=1,2; ~~l=1,2,3,4 \\
 T^{21}_{nk} & = K^{21}_{nk} +
 \sum_{q=1}^{4} d_q\frac{\partial K_{nq}^{22}}{\partial u_k},
 & & \qquad n=1,2,3,4; ~~k=1,2 \\
 T^{22}_{nl} & = K^{22}_{nl} +
 \sum_{p=1}^{2} u_p\frac{\partial K_{np}^{21}}{\partial d_l} +
 \sum_{q=1}^{4} d_q\frac{\partial K_{nq}^{22}}{\partial d_l},
 & & \qquad n=1,2,3,4; l=1,2,3,4 ~.
 \end{align}

Consider the coefficients of \mathbf{T}^{12}:


 T^{12}_{ml} = K^{12}_{ml} +
 \sum_{q=1}^{4} d_q\frac{\partial K_{mq}^{12}}{\partial d_l},
\qquad m=1,2; ~~l=1,2,3,4 ~.

From our previous derivation, we have


 K_{mq}^{12} =\frac{1}{2} \int_{x_a}^{x_b} \left(A_{xx}\cfrac{dw_0}{dx}\right)
 \cfrac{d\psi_m}{dx} \cfrac{d\phi_q}{dx}~dx~.

Therefore,

\begin{align}
 \frac{\partial K_{mq}^{12}}{\partial d_l} &=
 \frac{1}{2}\int_{x_a}^{x_b}\left[A_{xx}\frac{\partial }{\partial d_l}\left(\cfrac{dw_0}{dx}\right)\right]
 \cfrac{d\psi_m}{dx} \cfrac{d\phi_q}{dx}~dx \\
 & =
 \frac{1}{2}\int_{x_a}^{x_b}\left[A_{xx}\left(\sum_{T=1}^{4}\frac{\partial d_T}{\partial d_l}
\cfrac{d\phi_T}{dx}\right)\right]
 \cfrac{d\psi_m}{dx} \cfrac{d\phi_q}{dx}~dx \\
 & =
 \frac{1}{2}\int_{x_a}^{x_b}\left[A_{xx}\cfrac{d\phi_l}{dx}\right]
 \cfrac{d\psi_m}{dx} \cfrac{d\phi_q}{dx}~dx
 \end{align}

The tangent stiffness matrix coefficients are therefore

\begin{align}
 { T^{12}_{ml}} & = K^{12}_{ml} +
 \sum_{q=1}^{4} d_q\left\{
\frac{1}{2}\int_{x_a}^{x_b}\left[A_{xx}\cfrac{d\phi_l}{dx}\right]
 \cfrac{d\psi_m}{dx} \cfrac{d\phi_q}{dx}~dx \right\}
\qquad m=1,2; ~~l=1,2,3,4 ~. \\
& = K^{12}_{ml} +
\frac{1}{2}\int_{x_a}^{x_b} A_{xx}\cfrac{d\phi_l}{dx}
\cfrac{d\psi_m}{dx}\left(\sum_{q=1}^{4}d_q\cfrac{d\phi_q}{dx}\right)~dx
 \\
& = K^{12}_{ml} +
\frac{1}{2}\int_{x_a}^{x_b} A_{xx}\cfrac{d\phi_l}{dx}
\cfrac{d\psi_m}{dx}\cfrac{dw_0}{dx}~dx\\
& = { 2K^{12}_{ml}} ~.
 \end{align}

Next, { consider the coefficients of \mathbf{T}^{21}:


 T^{21}_{nk} = K^{21}_{nk} +
 \sum_{q=1}^{4} d_q\frac{\partial K_{nq}^{22}}{\partial u_k} ~.

The coefficients of \mathbf{K}^{22} are


 K_{nq}^{22}= \int_{x_a}^{x_b}\left\{
 \frac{1}{2} A_{xx}
 \left[\cfrac{du_0}{dx}+\left(\cfrac{dw_0}{dx}\right)^2\right]
 \cfrac{d\phi_n}{dx}\cfrac{d\phi_q}{dx} +
D_{xx}\cfrac{d^2\phi_n}{dx^2}\cfrac{d^2\phi_q}{dx^2}\right\}~dx ~.

Therefore, the derivatives are

\begin{align}
 \frac{\partial K_{nq}^{22}}{\partial u_k} & = \int_{x_a}^{x_b}
 \frac{1}{2} A_{xx}
 \left[\sum_{T=1}^{2}\frac{\partial u_T}{\partial u_k}\cfrac{d\psi_T}{dx}+
 2\cfrac{dw_0}{dx}\left(\sum_{T=1}^{4}\frac{\partial d_T}{\partial u_k}\cfrac{d\phi_T}{dx}
 \right)\right]
 \cfrac{d\phi_n}{dx}\cfrac{d\phi_q}{dx}~dx \\
 &= \frac{1}{2}\int_{x_a}^{x_b} A_{xx} \cfrac{d\psi_k}{dx}
\cfrac{d\phi_n}{dx}\cfrac{d\phi_q}{dx}~dx \\
 \end{align}

Therefore the coefficients of \mathbf{T}^{21} are

\begin{align}
 { T^{21}_{nk}} & = K^{21}_{nk} +
 \sum_{q=1}^{4} d_q\left(\frac{1}{2}\int_{x_a}^{x_b} A_{xx} \cfrac{d\psi_k}{dx}
\cfrac{d\phi_n}{dx}\cfrac{d\phi_q}{dx}~dx\right) \\
& = K^{21}_{nk} +
\frac{1}{2}\int_{x_a}^{x_b} A_{xx}\cfrac{d\psi_k}{dx}\cfrac{d\phi_n}{dx}
\left(\sum_{q=1}^{4} d_q\cfrac{d\phi_q}{dx}\right)~dx \\
& = K^{21}_{nk} +
\frac{1}{2}\int_{x_a}^{x_b} A_{xx}\cfrac{d\psi_k}{dx}\cfrac{d\phi_n}{dx}
\cfrac{dw_0}{dx}~dx \\
& = { 2K^{21}_{nk}} ~.
 \end{align}

Finally, for the \mathbf{T}^{22} coefficients, we start with


 T^{22}_{nl} = K^{22}_{nl} +
 \sum_{p=1}^{2} u_p\frac{\partial K_{np}^{21}}{\partial d_l} +
 \sum_{q=1}^{4} d_q\frac{\partial K_{nq}^{22}}{\partial d_l},
 \qquad n=1,2,3,4; l=1,2,3,4

and plug in the derivatives of the stiffness matrix coefficients

\begin{align}
 K_{np}^{21} & = \frac{1}{2} \int_{x_a}^{x_b} \left(A_{xx} \cfrac{dw_0}{dx}\right)
 \cfrac{d\phi_n}{dx}\cfrac{d\psi_p}{dx}~dx\\
 K_{nq}^{22} & = \int_{x_a}^{x_b}\left\{
 \frac{1}{2} A_{xx}
 \left[\cfrac{du_0}{dx}+\left(\cfrac{dw_0}{dx}\right)^2\right]
 \cfrac{d\phi_n}{dx}\cfrac{d\phi_q}{dx} +
D_{xx}\cfrac{d^2\phi_n}{dx^2}\cfrac{d^2\phi_q}{dx^2}\right\}~dx ~.
 \end{align} \\

The derivatives are

\begin{align}
 \frac{\partial K_{np}^{21}}{\partial d_l} & =
 \frac{1}{2} \int_{x_a}^{x_b} \left[A_{xx} \frac{\partial }{\partial d_l}\left(\cfrac{dw_0}{dx}\right)
 \right] \cfrac{d\phi_n}{dx}\cfrac{d\psi_p}{dx}~dx\\
& = \frac{1}{2} \int_{x_a}^{x_b} A_{xx}\left[\sum_{T=1}^{4}\frac{\partial d_T}{\partial d_l}\cfrac{d\phi_T}{dx}
\right] \cfrac{d\phi_n}{dx}\cfrac{d\psi_p}{dx}~dx \\
& = \frac{1}{2} \int_{x_a}^{x_b} A_{xx}\cfrac{d\phi_l}{dx}\cfrac{d\phi_n}{dx}
\cfrac{d\psi_p}{dx}~dx
 \end{align}

and

\begin{align}
\frac{\partial K_{nq}^{22}}{\partial d_l} & = \int_{x_a}^{x_b} \frac{1}{2} A_{xx}
 \left[\sum_{T=1}^{2}\frac{\partial u_T}{\partial d_l}\cfrac{d\psi_T}{dx}+
 2\cfrac{dw_0}{dx}\left(\sum_{T=1}^{4}
 \frac{\partial d_T}{\partial d_l}\cfrac{d\phi_T}{dx}\right)\right]
\cfrac{d\phi_n}{dx}\cfrac{d\phi_q}{dx}~dx \\
& = \int_{x_a}^{x_b} A_{xx} \cfrac{dw_0}{dx} \cfrac{d\phi_l}{dx}
\cfrac{d\phi_n}{dx}\cfrac{d\phi_q}{dx}~dx
 \end{align}

Therefore, the coefficients of the tangent stiffness matrix can be written as

\begin{align}
 { T^{22}_{nl}} & = K^{22}_{nl} +
 \sum_{p=1}^{2} u_p \left[
 \frac{1}{2} \int_{x_a}^{x_b} A_{xx}\cfrac{d\phi_l}{dx}\cfrac{d\phi_n}{dx}
 \cfrac{d\psi_p}{dx}~dx \right] +
 \sum_{q=1}^{4} d_q \left[
\int_{x_a}^{x_b} A_{xx} \cfrac{dw_0}{dx} \cfrac{d\phi_l}{dx}
\cfrac{d\phi_n}{dx}\cfrac{d\phi_q}{dx}~dx \right]\\
 & = K^{22}_{nl} +
 \frac{1}{2} \int_{x_a}^{x_b} A_{xx}\cfrac{d\phi_l}{dx}\cfrac{d\phi_n}{dx}
 \left(\sum_{p=1}^{2} u_p \cfrac{d\psi_p}{dx}\right)~dx+
\int_{x_a}^{x_b} A_{xx} \cfrac{dw_0}{dx} \cfrac{d\phi_l}{dx} \cfrac{d\phi_n}{dx}
 \left(\sum_{q=1}^{4} d_q \cfrac{d\phi_q}{dx}\right)~dx\\
 & = K^{22}_{nl} +
 \frac{1}{2} \int_{x_a}^{x_b} A_{xx}\cfrac{d\phi_l}{dx}\cfrac{d\phi_n}{dx}
 \cfrac{du_0}{dx}~dx +
\int_{x_a}^{x_b} A_{xx} \cfrac{dw_0}{dx} \cfrac{d\phi_l}{dx} \cfrac{d\phi_n}{dx}
 \cfrac{dw_0}{dx}~dx \\
 & = { K^{22}_{nl} +
 \frac{1}{2} \int_{x_a}^{x_b} A_{xx}\left[\cfrac{du_0}{dx} +
 2\left(\cfrac{dw_0}{dx}\right)^2\right]
\cfrac{d\phi_l}{dx}\cfrac{d\phi_n}{dx}~dx }~.
 \end{align}

The final expressions for the tangent stiffness matrix terms are


 \begin{align}
 T^{11}_{ij} & = K^{11}_{ij},
 & &\qquad i=1,2; ~~j=1,2 \\
 T^{12}_{ij} & = 2 K^{12}_{ij},
 & & \qquad i=1,2; ~~j=1,2,3,4 \\
 T^{21}_{ij} & = 2 K^{21}_{ij},
 & & \qquad i=1,2,3,4; ~~j=1,2 \\
 T^{22}_{ij} & = K^{22}_{ij} +
 \frac{1}{2} \int_{x_a}^{x_b} A_{xx}\left[\cfrac{du_0}{dx} +
 2\left(\cfrac{dw_0}{dx}\right)^2\right]
\cfrac{d\phi_i}{dx}\cfrac{d\phi_j}{dx}~dx
 & & \qquad i=1,2,3,4; j=1,2,3,4 ~.
 \end{align}
This article is issued from Wikiversity - version of the Tuesday, January 01, 2008. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.