Nonlinear finite elements/Homework 7/Solutions

< Nonlinear finite elements < Homework 7

Problem 1: Index Notation

Solutions

Part 1

  1. Determine whether the following expressions are valid in index notation. If valid, identify the free indices and the dummy indices.

1) A_{ms} = b_m (c_r - d_r)

Invalid. The free indices are m,s on the LHS and m,r on the RHS.

2) A_{ms} = b_m (c_s - d_s)

Valid. Both m and s are free indices.

3) t_i= \sigma_{ji} n_j

Valid. The free index is i and the dummy index is j.

4) t_i= \sigma_{ji} n_i

Invalid. The free index is i on the LHS and j on the RHS.

5) x_i x_i = r^3

Valid. The dummy index is i. So the sum is a scalar which is equal to r^3.

6) B_{ij} c_j = 3

Invalid. There is one free index on the LHS and no free index on the RHS.

Part 2

Show the following:

1) \delta_{ii} = 3


\delta_{ii} = \delta_{11} + \delta_{22} + \delta_{33} =
 1 + 1 + 1 = 3\qquad \implies \qquad \delta_{ii} = 3

2) e_{ijk}e_{pqk} = \delta_{ip}\delta_{jq} -
\delta_{iq}\delta_{jp}

The LHS is


 e_{ijk}e_{pqk} = e_{ij1}e_{pq1} + e_{ij2}e_{pq2} + e_{ij3}e_{pq3}

If i=j, then we have


 LHS = ({e_{iik}})~~(e_{pqk}) = 0 ~;~~
 RHS = \delta_{ip}\delta_{iq} - \delta_{iq}\delta_{ip} = 0

We get the same result if p=q. The only nonzero LHS and RHS occur when i\ne j and p\ne q.


 LHS = ({e_{121}e_{121}})~~ +
 ({e_{122}e_{122}})~~ +
 ({e_{123}e_{123}})~~ = 1 ~;~~
 RHS = ({\delta_{11}\delta_{11}})~~ -
 ({\delta_{12}\delta_{12}})~~ = 1

i=2, j=1, p=1, q=2.


 LHS = ({e_{121}e_{211}})~~ +
 ({e_{122}e_{212}})~~ +
 ({e_{123}e_{213}})~~ = -1 ~;~~
 RHS = ({\delta_{12}\delta_{21}})~~ -
 ({\delta_{11}\delta_{22}})~~ = -1

 LHS = ({e_{211}e_{211}})~~ +
 ({e_{212}e_{212}})~~ +
 ({e_{213}e_{213}})~~ = 1 ~;~~
 RHS = ({\delta_{22}\delta_{11}})~~ -
 ({\delta_{21}\delta_{12}})~~ = 1

 LHS = ({e_{231}e_{231}})~~ +
 ({e_{232}e_{232}})~~ +
 ({e_{233}e_{233}})~~ = 1 ~;~~
 RHS = ({\delta_{22}\delta_{22}})~~ -
 ({\delta_{23}\delta_{23}})~~ = 1

i=3, j=2, p=2, q=3.


 LHS = ({e_{231}e_{321}})~~ +
 ({e_{232}e_{322}})~~ +
 ({e_{233}e_{323}})~~ = -1 ~;~~
 RHS = ({\delta_{23}\delta_{32}})~~ -
 ({\delta_{22}\delta_{33}})~~ = -1

 LHS = ({e_{321}e_{321}})~~ +
 ({e_{322}e_{322}})~~ +
 ({e_{323}e_{323}})~~ = 1 ~;~~
 RHS = ({\delta_{33}\delta_{22}})~~ -
 ({\delta_{32}\delta_{23}})~~ = 1

 LHS = ({e_{311}e_{311}})~~ +
 ({e_{312}e_{312}})~~ +
 ({e_{313}e_{313}})~~ = 1 ~;~~
 RHS = ({\delta_{33}\delta_{11}})~~ -
 ({\delta_{31}\delta_{13}})~~ = 1

i=1, j=3, p=3, q=1.


 LHS = ({e_{311}e_{131}})~~ +
 ({e_{312}e_{132}})~~ +
 ({e_{313}e_{133}})~~ = -1 ~;~~
 RHS = ({\delta_{31}\delta_{13}})~~ -
 ({\delta_{33}\delta_{11}})~~ = -1

 LHS = ({e_{131}e_{131}})~~ +
 ({e_{132}e_{132}})~~ +
 ({e_{133}e_{133}})~~ = 1 ~;~~
 RHS = ({\delta_{11}\delta_{33}})~~ -
 ({\delta_{13}\delta_{31}})~~ = 1

Hence the ~e-\delta relation is satisfied for all cases.

3) \delta_{ij}e_{ijk} = 0


{
{\delta_{ij}e_{ijk} = e_{iik} = 0 }.
}

4) e_{qrs} d_q d_s = 0

\begin{align}
 e_{qrs} d_q d_s = & \sum_{q=1}^3 \sum_{s=1}^3 e_{qrs} d_q d_s \\
 = & ({e_{1r1} d_1 d_1})~~~ +
 e_{1r2} d_1 d_2 +
 e_{1r3} d_1 d_3 + \\
 & e_{2r1} d_2 d_1 +
 ({e_{2r2} d_2 d_2})~~~ +
 e_{2r3} d_2 d_3 + \\
 & e_{3r1} d_3 d_1 +
 e_{3r2} d_3 d_2 +
 ({e_{3r3} d_3 d_3})
\end{align}

For r=1,


 e_{qrs} d_q d_s =
 ({e_{112}})~~~ d_1 d_2 +
 ({e_{113}})~~~ d_1 d_3 +
 ({e_{211}})~~~ d_2 d_1 +
 ({e_{213}})~~~ d_2 d_3 +
 ({e_{311}})~~~ d_3 d_1 +
 ({e_{312}})~~~ d_3 d_2 = 0

For r=2,


 e_{qrs} d_q d_s =
 ({e_{122}})~~~ d_1 d_2 +
 ({e_{123}})~~~ d_1 d_3 +
 ({e_{221}})~~~ d_2 d_1 +
 ({e_{223}})~~~ d_2 d_3 +
 ({e_{321}})~~~ d_3 d_1 +
 ({e_{322}})~~~ d_3 d_2 = 0

For r=3,


 e_{qrs} d_q d_s =
 ({e_{132}})~~~ d_1 d_2 +
 ({e_{133}})~~~ d_1 d_3 +
 ({e_{231}})~~~ d_2 d_1 +
 ({e_{233}})~~~ d_2 d_3 +
 ({e_{331}})~~~ d_3 d_1 +
 ({e_{332}})~~~ d_3 d_2 = 0

Hence shown.

Part 3

The elasticity tensor is given by


\boldsymbol{\mathsf{C}} = \lambda~ \boldsymbol{\mathit{1}}\otimes\boldsymbol{\mathit{1}} + 2\mu~\boldsymbol{\mathsf{I}}

where \lambda, \mu are Lame constants, \boldsymbol{\mathit{1}} is the second order identity tensor, and \boldsymbol{\mathsf{I}} is the fourth-order symmetric identity tensor. The two identity tensors are defined as

\begin{align}
\boldsymbol{\mathit{1}} & = \delta_{ij}~\mathbf{e}_i\otimes\mathbf{e}_j \\
\boldsymbol{\mathsf{I}} & = \frac{1}{2}[\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}]~
 \mathbf{e}_i\otimes\mathbf{e}_j\otimes\mathbf{e}_k\otimes\mathbf{e}_l
\end{align}

The stress-strain relation is


\boldsymbol{\sigma} = \boldsymbol{\mathsf{C}} : \boldsymbol{\varepsilon}

Show that the stress-strain relation can be written in index notation as


\sigma_{ij} = 2\mu\varepsilon_{ij} + \lambda\varepsilon_{kk}\delta_{ij}~.

Write the stress-strain relations in expanded form.

\begin{align}
\boldsymbol{\sigma} & = \boldsymbol{\mathsf{C}} : \boldsymbol{\varepsilon} \\
& = \left(\lambda~ \boldsymbol{\mathit{1}}\otimes\boldsymbol{\mathit{1}} + 2\mu~\boldsymbol{\mathsf{I}}\right):\boldsymbol{\varepsilon} \\
& = \left(\lambda~ \boldsymbol{\mathit{1}}\otimes\boldsymbol{\mathit{1}}\right):\boldsymbol{\varepsilon} +
2\mu~\boldsymbol{\mathsf{I}}:\boldsymbol{\varepsilon}
\end{align}

Now, in dyadic notation


\boldsymbol{\mathit{1}}\otimes\boldsymbol{\mathit{1}} = (\delta_{ij}~\mathbf{e}_i\otimes\mathbf{e}_j)\otimes
 (\delta_{kl}~\mathbf{e}_k\otimes\mathbf{e}_l)
= \delta_{ij}\delta_{kl}~
\mathbf{e}_i\otimes\mathbf{e}_j\otimes\mathbf{e}_k\otimes\mathbf{e}_l
~\text{and}~
\boldsymbol{\varepsilon} = \varepsilon_{kl}~\mathbf{e}_k\otimes\mathbf{e}_l

Therefore

\begin{align}
(\boldsymbol{\mathit{1}}\otimes\boldsymbol{\mathit{1}}):\boldsymbol{\varepsilon} & =
\delta_{ij}\delta_{kl}\varepsilon_{kl}~\mathbf{e}_i\otimes\mathbf{e}_j \\
& = \delta_{ij}\varepsilon_{kk}~\mathbf{e}_i\otimes\mathbf{e}_j
\end{align}

Similarly,

\begin{align}
\boldsymbol{\mathsf{I}}:\boldsymbol{\varepsilon} & = \left(
 \frac{1}{2}[\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}]
 \varepsilon_{kl}\right)~
 \mathbf{e}_i\otimes\mathbf{e}_j \\
 & = \frac{1}{2}\left(\delta_{ik}\varepsilon_{kj} + \delta_{il}\varepsilon_{jl}\right)~
 \mathbf{e}_i\otimes\mathbf{e}_j \\
 & = \frac{1}{2}\left(\varepsilon_{ij} + \varepsilon_{ji}\right)~\mathbf{e}_i\otimes\mathbf{e}_j \\
 & = \varepsilon_{ij}~ \mathbf{e}_i\otimes\mathbf{e}_j \qquad \text{(symmetry)}
\end{align}

The stress-strain law becomes

\begin{align}
\boldsymbol{\sigma} & = \lambda~\delta_{ij}\varepsilon_{kk}~\mathbf{e}_i\otimes\mathbf{e}_j +
2\mu~ \varepsilon_{ij}~ \mathbf{e}_i\otimes\mathbf{e}_j \\
& = \left(\lambda\delta_{ij}\varepsilon_{kk} + 2\mu\varepsilon_{ij}\right)
\mathbf{e}_i\otimes\mathbf{e}_j
\end{align}

Expanding the left hand side, we get


\sigma_{ij}~\mathbf{e}_i\otimes\mathbf{e}_j =
 \left(\lambda\delta_{ij}\varepsilon_{kk} + 2\mu\varepsilon_{ij}\right)
\mathbf{e}_i\otimes\mathbf{e}_j

Therefore,


\sigma_{ij} = \lambda\delta_{ij}\varepsilon_{kk} + 2\mu\varepsilon_{ij}


Problem 2: Rotating Vectors and Tensors

Let (\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3) be an orthonormal basis. Let \boldsymbol{A} be a second order tensor and \mathbf{u} be a vector with components

\begin{align}
\boldsymbol{A} &= 5~\mathbf{e}_1\otimes\mathbf{e}_1 - 4~\mathbf{e}_2\otimes\mathbf{e}_1 +
 2~\mathbf{e}_3\otimes\mathbf{e}_3\\
\mathbf{u} &= -2~\mathbf{e}_1 + 3~\mathbf{e}_3
\end{align}

Solution

Part 1

Write out \boldsymbol{A} and \mathbf{u} in matrix notation.


{{
\mathbf{A} = \begin{bmatrix}
 5 & 0 & 0 \\
 -4 & 0 & 0 \\
 0 & 0 & 2
 \end{bmatrix} ; \qquad
\mathbf{u} = \begin{bmatrix}
 -2 \\ 0 \\ 3
 \end{bmatrix}
}}

Part 2

Find the components of the vector \mathbf{v} = \boldsymbol{A}\bullet\mathbf{u} in the basis (\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3).

The components of \mathbf{v} are


 v_i = A_{ij} u_j

Therefore


 v_1 = (5)(-2) = -10 ;~~
 v_2 = (-4)(-2) = 8 ;~~
 v_3 = (2)(3) = 6

 {{
 \mathbf{v} = -10~\mathbf{e}_1 + 8 \mathbf{e}_2 + 6 \mathbf{e}_3
 }}

Part 3

Find the components of the vector \mathbf{w} = \mathbf{v}\times\mathbf{u} in the basis (\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3).

The cross product is given by


 \mathbf{w} = \mathbf{v}\times\mathbf{u} =
 \begin{vmatrix}
 \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\
 v_1 & v_2 & v_3 \\
 u_1 & u_2 & u_3
 \end{vmatrix} =
 \begin{vmatrix}
 \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\
 -10 & 8 & 6 \\
 -2 & 0 & 3
 \end{vmatrix} = (8)(3)\mathbf{e}_1 - [(-10)(3)-(6)(-2)]\mathbf{e}_2 -
 (8)(-2)\mathbf{e}_3

Therefore,


 {{
 \mathbf{w} = 24~\mathbf{e}_1 + 18 \mathbf{e}_2 + 16 \mathbf{e}_3
 }}

Part 4

Find the components of the tensor \boldsymbol{C} = \mathbf{v}\otimes\mathbf{w} in the orthonormal basis.

The tensor product is given by


 \mathbf{v}\otimes\mathbf{w} = v_i w_j ~\mathbf{e}_i\otimes\mathbf{e}_j

Hence, in matrix notation


 \mathbf{C} = \begin{bmatrix}
v_1 \\ v_2 \\ v_3
\end{bmatrix}
\begin{bmatrix}
w_1 & w_2 & w_3
\end{bmatrix} =
\begin{bmatrix}
-10 \\ 8 \\ 6
\end{bmatrix}
\begin{bmatrix}
24 & 18 & 16
\end{bmatrix}

 {{
 \mathbf{C} = \begin{bmatrix}
-240 & -180 & -160 \\
 192 & 144 & 128 \\
 144 & 108 & 96
\end{bmatrix}
 }}

Part 5

Rotate the basis clockwise by 30 degrees around the \mathbf{e}_3 direction. Find the components of \mathbf{u}, \mathbf{v}, \mathbf{w}, and \boldsymbol{C} in the rotated basis.

The vector transformation rule is


 v^{'}_i = l_{ij} v_i

where l_{ij} are the direction cosines.

In this case, the direction cosines are

\begin{align}
l_{11} & = \mathbf{e}_1^{'}\bullet\mathbf{e}_1 = \cos(30) = 0.866 &
l_{12} & = \mathbf{e}_1^{'}\bullet\mathbf{e}_2 = \cos(60) = 0.5&
l_{13} & = \mathbf{e}_1^{'}\bullet\mathbf{e}_3 = \cos(90) = 0 \\
l_{21} & = \mathbf{e}_2^{'}\bullet\mathbf{e}_1 = \cos(120) = -0.5 &
l_{22} & = \mathbf{e}_2^{'}\bullet\mathbf{e}_2 = \cos(30) = 0.866 &
l_{23} & = \mathbf{e}_2^{'}\bullet\mathbf{e}_3 = \cos(90) = 0\\
l_{31} & = \mathbf{e}_3^{'}\bullet\mathbf{e}_1 = \cos(90) = 0&
l_{32} & = \mathbf{e}_3^{'}\bullet\mathbf{e}_2 = \cos(90)= 0 &
l_{33} & = \mathbf{e}_3^{'}\bullet\mathbf{e}_3 = \cos(0)= 1
\end{align}

Therefore,


\mathbf{u}^{'} = \mathbf{L} \mathbf{u} =
\begin{bmatrix}
0.866 & 0.5 & 0 \\
-0.5 & 0.866 & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
-2 \\ 0 \\ 3
\end{bmatrix} =
\begin{bmatrix}
-1.732 \\ 1 \\ 3
\end{bmatrix}

{{
 \mathbf{u}^{'} = -1.732 \mathbf{e}_1 + 1 \mathbf{e}_2 + 3 \mathbf{e}_3
}}

Similarly,


\mathbf{v}^{'} = \mathbf{L} \mathbf{v} =
\begin{bmatrix}
0.866 & 0.5 & 0 \\
-0.5 & 0.866 & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
-10 \\ 8 \\ 6
\end{bmatrix} =
\begin{bmatrix}
-4.66 \\ 11.93 \\ 6
\end{bmatrix}

{{
 \mathbf{v}^{'} = -4.66 \mathbf{e}_1 + 11.93 \mathbf{e}_2 + 6 \mathbf{e}_3
}}

Also,


\mathbf{w}^{'} = \mathbf{L} \mathbf{w} =
\begin{bmatrix}
0.866 & 0.5 & 0 \\
-0.5 & 0.866 & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
24 \\ 18 \\ 16
\end{bmatrix} =
\begin{bmatrix}
29.78 \\ 3.59 \\ 16
\end{bmatrix}

{{
 \mathbf{v}^{'} = 29.78 \mathbf{e}_1 + 3.59 \mathbf{e}_2 + 16 \mathbf{e}_3
}}

From the handout from Slaughter's book, the tensor transformation rule is


 T^{'}_{ij} = l_{ip} l_{jq} T_{pq}

where l_{ij} are the direction cosines.

In matrix form,


 \mathbf{T}^{'} = \mathbf{L} \mathbf{T} \mathbf{L}^{T}

Therefore the components of \boldsymbol{C} in the rotated basis are give by


 \mathbf{C}^{'} =
\begin{bmatrix}
0.866 & 0.5 & 0 \\
-0.5 & 0.866 & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
-240 & -180 & -160 \\
192 & 144 & 128 \\
144 & 108 & 96
\end{bmatrix}
\begin{bmatrix}
0.866 & -0.5 & 0 \\
0.5 & 0.866 & 0 \\
 0 & 0 & 1
\end{bmatrix} =
\begin{bmatrix}
-138.8 & -16.7 & -74.6 \\
 355.3 &42.8 & 190.9 \\
 178.7 &21.5 & 96
\end{bmatrix}

{{
 \mathbf{C}^{'} =
\begin{bmatrix}
-138.8 & -16.7 & -74.6 \\
 355.3 &42.8 & 190.9 \\
 178.7 &21.5 & 96
\end{bmatrix}
}}


Problem 3: More Beams

Part A

Consider a beam of length L = 100 in., cross-section 1 in. \times 1 in., and subjected to a uniformly distributed transverse load q_0 lbf/in. Model one half of the beam using symmetry considerations.

Part 1

Hinged-Hinged Beam

The boundary conditions are


 w_0(0) = u_0(L/2) = \varphi_x(L/2) = 0 ~.

Compute a plot similar to that shown in Figure 4.3.4 for this case using Beam188 elements. What do you observe?

The result is shown in Table 1.

Table 1. Deflections of a hinged-hinged beam
Load U_y at x=L/2
1 -0.520746
2 -1.04086
3 -1.55922
4 -2.07510
5 -2.58768
6 -3.09622
7 -3.60000
8 -4.09835
9 -4.59065
10 -5.07636

Part 2

Clamped-Clamped Beam

The boundary conditions are


 u_0(0) = w_0(0) = \varphi_x(0) = u_0(L/2) = \varphi_{x = L/2} = 0.

Compute a plot for this case using Beam188 elements. Comment on your plot.

The result is shown in Table 2.

Table 2. Deflections of a clamped-clamped beam
Load U_y at x=L/2
1 -0.103456
2 -0.202476
3 -0.294220
4 -0.377753
5 -0.453387
6 -0.521968
7 -0.584455
8 -0.644185
9 -0.696440
10 -0.745243

Listed below is the ANSYS input code for Problem 3A.1 and 3A.2.

/prep7

b = 1
h = 1

et,1,188
sectype,1,beam,rect
secdata,b,h

MP,EX,1,30e6
MP,PRXY,1,0.3

K,1,0,0,0
K,2,50,0,0
k,3,0,50,0

L,1,2,50

latt,1,,1,,3,3,1

LMESH,ALL

!change this section to d,1,all,0 for Problem 3A.2
d,1,uy,0
d,1,uz,0
d,2,rotz,0
nsel,all

sfbeam,all,,pres,10

fini

/solu
nlgeom,on
autots,on
nsubst,10,100,10
outres,all,all
solve
finish

Part B

Part 1

Simulate the unrolling of a cantilever beam from Section 4.1.1 of Ibrahimbegovic (1995) and compare your results with the results shown in the paper.

The result is shown in Table 3.

Table 3. Cantilever free-end displacement components
Load U_x U_y Rotation
M=10\pi -0.040666 6.3205 -3.1287
M=20\pi 9.9578 0.12729 -6.2577

The deformation plots are shown in Figure 4 and 5.

Figure 4. Deformed shape under M=10\pi for Problem 3B.1.
Figure 5. Deformed shape under M=20\pi for Problem 3B.1.

The ANSYS input code for this problem is listed below.

/prep7

et,1,beam188
sectype,1,beam,rect
secdata,1,1

mp,ex,1,1200
mp,prxy,1,0

l = 10
pi = 4*atan(1)
r = L/2/pi

K,1,0,-r
K,2,-r,0
K,3,0,r
K,4,r,0
K,5,0,-r

k,6,0,0,10

k,7,0,0,0

larc,1,2,7,r,5
larc,2,3,7,r,5
larc,3,4,7,r,5
larc,4,5,7,r,5

latt,1,,1,,6,6,1
lmesh,all

dk,5,all,0

fk,1,mz,-20*pi

/solu
nlgeom,on
cnvtol,f,5,0.001
outres,all,all
arclen,on
nsubst,100
solve
fini

Part 2

Simulate the clamped-hinged deep circular arch from Example 7.3 of Simo and Vu Quoc (1986) and compare you results with the results shown in the paper.

The inputs are:R = 100, \varphi = 145^o, EI = 10^6, and EA = 100 EI. We assume a square cross section. Then

\begin{align}
 I & = \cfrac{1}{12} h^4~; & A & = h^2 \\
 \cfrac{EA}{EI} & = \cfrac{A}{I}~; & \cfrac{12 h^2}{h^4} =
 \cfrac{12}{h^2} = 100
\end{align}

Therefore, h = 0.34641.

The deformed shape (unconverged) for a load of 905 is shown in Figure 6.

Figure 6. Deformed shape of arch.

The load-displacement curve (up to the last converged solution) is shown in Figure 7.

Figure 7. Load-displacement plot for circular arch.

The buckling load is 900.925 compared to 905.28 in Simo and Vu Quoc.

The ANSYS file use for the calculations is shown below.

/prep7  
!*
!* Total load
!*
load = 905.0
!*  
!*  Element type
!*
et,1,beam188
keyopt,1,1,0
keyopt,1,2,0
keyopt,1,3,0
keyopt,1,4,0
keyopt,1,6,0
keyopt,1,7,0
keyopt,1,8,0
keyopt,1,9,0
keyopt,1,10,0   
keyopt,1,11,0   
keyopt,1,12,0   
!*
!*  Beam cross-section type
!*
sectype, 1, beam, rect, , 0   
secoffset, cent 
secdata, 0.34641, 0.34641, 0,0,0,0,0,0,0,0 
!*  
!*  Material properties
!* 
mptemp,,,,,,,,  
mptemp,1,0  
mpdata,ex,1,,8.3e8  
mpdata,prxy,1,,0.33 
!*
!* Keypoints
!*
k, 1,   0.000,   0.000, 0.000
k, 2, -95.372, -30.071, 0.000
k ,3,  95.372, -30.071, 0.000 
k ,4,   0.000, 100.000, 0.000
!*  
!* Arcs
!*
larc,3,4,1,100, 
larc,4,2,1,100, 
!*  
!* Element size = 20 elements per arc
!*
lesize,all, , ,20, ,1, , ,1,
!*
!* Mesh the arcs
!*
lmesh, all
!*
!* Plot the nodes
!*
nplot   
/pnum,node,1
/number,0   
/replot 
!*
!* Apply displacement BCs
!*
!* Hinged end
!*
d, 22, ux, 0
d, 22, uy, 0
d, 22, uz, 0
!*
!* Clamped end
!*
d, 1, all, 0
!*
!* Apply load
!*
f, 2, fy, -load
finish  
!*
!* Solve
!*
/solu
antype, static
nlgeom, on
!autots, on
!solcontrol, on
!*
!* Load step 1
!*
time, 1.0
! f, 2, fy, -load
nsubst,100,0,0  
kbc, 0
neqit, 100
outres, ,1
arclen,on,100.0,0.0
lswrite
solve
finish  
!*
!* See solution
!*
/post26
!*
!* Save solution in variables 2 and 3
!*
nsol, 2, 2, u, x               ! Save ux at node 2
nsol, 3, 2, u, y               ! Save uy at node 2
!*
!* Scale solution
!*
prod, 4, 1, , , Load, , ,load  ! Scale time to get load
prod, 5, 2, , ,     , , ,-1    ! Make disp +ve
prod, 6, 3, , ,     , , ,-1    ! Make disp +ve
prvar, 4, 5, 6                 ! Print load, ux, uy
!*
!* Plot solution
!*
/axlab, x, Deflection
/axlab, y, Load
/grid, 1
xvar, 5                     
plvar, 4                       ! plot ux vs load
/noerase
xvar, 6
plvar, 4                       ! plot uy vs load
/erase

Here is another version of solution to this problem.

Figure 8. Force-displacement diagram for Problem 3B.2.
Figure 9. Shape deformation at the last load step for Problem 3B.2.

The ANSYS input code for Problem 3B.2 is listed below.

/prep7

A = 1
I = A/100
E = 1e6/I
nu = 0.3

et,1,beam188                ! Element type - BEAM188
sectype,1,beam,asec
secdata,A,I,,I,,2*I

mp,ex,1,E
mp,prxy,1,nu

pi = 4*atan(1)
phi = 35/2/180*pi
x = 100*cos(phi)
y = 100*sin(phi)

k,1,0,0,0
k,2,x,-y,0
k,3,0,100,0
k,4,-x,-y

k,5,0,0,100

larc,2,3,1,100
larc,3,4,1,100
latt,1,,1,,5,5,1

lesize,all,,,40
lmesh,all

dk,2,all,0
dk,4,ux,0
dk,4,uy,0
dk,4,uz,0

fk,3,fy,-900

/solu
nlgeom,on
nsubst,100,0,0
outres,all,all
arclen,on
solve
finish

Part 3

Simulate the buckling of a hinged right-angle frame under both fixed and follower loads from Example 7.4 of Simo and Vu Quoc (1986) and compare your results with those shown in the paper.

The force-displacement diagram is shown in Figure 10. The deformation is illustrated in Figure 11 and 12.

Figure 10. Force-displacement diagram for Problem 3B.3.
Figure 11. Deformation (fixed load) at the last load step for Problem 3B.3.
Figure 12. Force-displacement diagram (follower load) for Problem 3B.3.

The ANSYS input code for Problem 3B.3 is listed below.

/prep7

et,1,188

E = 7.2e6
I = 2
A = 6

sectype,1,beam,asec
secdata,A,I,,I,,2*I

mp,ex,1,7.2e6
mp,prxy,1,0.3

k,1,0,0,0
k,2,0,120,0
k,3,23,120,0
k,4,26,120,0
k,5,120,120,0

k,6,200,0,0
k,7,0,200,0
l,1,2,5
l,2,3,1
l,3,4,2
l,4,5,4

latt,1,,1,,6,6,1
lmesh,1
latt,1,,1,,7,7,1
lmesh,2,4

d,1,ux,0
d,1,uy,0
d,1,uz,0

d,18,ux,0
d,18,uy,0
d,18,uz,0

esel,s,elem,,7,8

!replace the line below with f,15,fy,-40000 for fixed load

sfbeam,all,,pres,40000/2
esel,all

fini

/solu
nlgeom,on
outres,all,all
arclen,on
nsubst,200
solve
fini

Warning: The arc length method no longer converges with Ansys 13. Try using the stabilization option instead of arclen, on:

stabilize, constant, energy, 0.001, anytime, 0
This article is issued from Wikiversity - version of the Saturday, January 14, 2012. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.