Nonlinear finite elements/Homework 7/Hints

< Nonlinear finite elements < Homework 7

Hints 1: Index notation

Index notation:


\sigma_{ij} = 2\mu~\varepsilon_{ij} + \lambda~\varepsilon_{kk}~\delta_{ij}~.

If j=i

\begin{align}
\sigma_{ii} & = 2\mu~\varepsilon_{ii} + \lambda~\varepsilon_{kk}~\delta_{ii} \\
 & = 2\mu~\varepsilon_{kk} + 3\lambda~\varepsilon_{kk} \\
 & = (2\mu + 3\lambda)~\varepsilon_{kk}
\end{align}

 \sigma_{kk} = (2\mu + 3\lambda)~\varepsilon_{kk}

Dummy indices are replaceable.

Hint 2: Index notation

Index notation:


\sigma_{ij} = 2\mu~\varepsilon_{ij} + \lambda~\varepsilon_{kk}~\delta_{ij}~.

Multiply by \delta_{ij}:

\begin{align}
\sigma_{ij}~\delta_{ij} & = 2\mu~\varepsilon_{ij}~\delta_{ij} + 
\lambda~\varepsilon_{kk}~\delta_{ij}~\delta_{ij}\\
\implies
\sigma_{jj}& = 2\mu~\varepsilon_{ii} + \lambda~\varepsilon_{kk}~\delta_{ii}\\
\implies
\sigma_{kk}& = 2\mu~\varepsilon_{kk} + 3\lambda~\varepsilon_{kk} \\
\implies
\sigma_{kk}& = (2\mu + 3\lambda)~\varepsilon_{kk}
\end{align}

Multiplication by \delta_{ij} leads to replacement of one index.


A_{ij}~\delta_{kl} = ? \qquad A_{ij}~\delta{jl} = ?

Hint 3: Index notation

Index notation:

\begin{align}
\boldsymbol{\sigma} & =\sigma_{ij}~\mathbf{e}_i\otimes\mathbf{e}_j \\
\boldsymbol{\varepsilon} & =\varepsilon_{ij}~\mathbf{e}_i\otimes\mathbf{e}_j 
\end{align}

From the definition of dyadic product, we can show

\begin{align}
(\mathbf{a}\otimes\mathbf{b}):(\mathbf{u}\otimes\mathbf{v}) & = 
 (\mathbf{a}\bullet\mathbf{u})(\mathbf{b}\bullet\mathbf{v}) 
\end{align}

Contraction gives:

\begin{align}
\boldsymbol{\sigma}:\boldsymbol{\varepsilon} & = (\sigma_{ij}~\mathbf{e}_i\otimes\mathbf{e}_j):
(\varepsilon_{kl}~\mathbf{e}_k\otimes\mathbf{e}_l) \\
& = \sigma_{ij}~\varepsilon_{kl}~(\mathbf{e}_i\otimes\mathbf{e}_j):
(\mathbf{e}_k\otimes\mathbf{e}_l) \\
& = \sigma_{ij}~\varepsilon_{kl}~
(\mathbf{e}_i\bullet\mathbf{e}_k)(\mathbf{e}_j\bullet\mathbf{e}_l) \\
& = \sigma_{ij}~\varepsilon_{kl}~\delta_{ik}~\delta_{jl} \\
& = \sigma_{ij}~\varepsilon_{ij}
\end{align}

Hint 4: Tensor product

Index notation:

\begin{align}
\boldsymbol{\varepsilon} & =\varepsilon_{ij}~\mathbf{e}_i\otimes\mathbf{e}_j \\
\boldsymbol{\mathsf{C}} & = C_{ijkl}~\mathbf{e}_i\otimes\mathbf{e}_j\otimes\mathbf{e}_k\otimes\mathbf{e}_l
\end{align}

Definition of dyadics products:

\begin{align}
(\mathbf{a}\bullet\mathbf{b})\otimes\mathbf{x} & = (\mathbf{b}\bullet\mathbf{x})\mathbf{a} \\
(\mathbf{a}\bullet\mathbf{b}\otimes\mathbf{c})\otimes\mathbf{x} & = (\mathbf{c}\bullet\mathbf{x})
(\mathbf{a}\otimes\mathbf{b}) \\
(\mathbf{a}\bullet\mathbf{b}\otimes\mathbf{c}\otimes\mathbf{d})\otimes\mathbf{x} & = (\mathbf{d}\bullet\mathbf{x})
(\mathbf{a}\otimes\mathbf{b}\otimes\mathbf{c}) 
\end{align}

We can show that

\begin{align}
(\mathbf{a}\otimes\mathbf{b}\otimes\mathbf{c}\otimes\mathbf{d}):(\mathbf{u}\otimes\mathbf{v}) & = 
((\mathbf{a}\bullet\mathbf{b}\otimes\mathbf{c}\otimes\mathbf{d})\otimes\mathbf{v})\bullet\mathbf{u} 
\end{align}

Contraction gives:

\begin{align}
\boldsymbol{\mathsf{C}}:\boldsymbol{\varepsilon} & = (C_{ijkl}~\mathbf{e}_i\otimes\mathbf{e}_j \otimes \mathbf{e}_k\otimes\mathbf{e}_l): (\varepsilon_{mn}~\mathbf{e}_m\otimes\mathbf{e}_n) \\
& = C_{ijkl}~\varepsilon_{mn}~(\mathbf{e}_i\otimes\mathbf{e}_j \otimes
\mathbf{e}_k\otimes\mathbf{e}_l):(\mathbf{e}_m\otimes\mathbf{e}_n) \\
& = C_{ijkl}~\varepsilon_{mn}~
 ((\mathbf{e}_i\bullet\mathbf{e}_i\otimes\mathbf{e}_k\otimes\mathbf{e}_l)\otimes\mathbf{e}_n)
 \bullet\mathbf{e}_m \\
& = C_{ijkl}~\varepsilon_{mn}~
 (\mathbf{e}_l\bullet\mathbf{e}_n)(\mathbf{e}_i\otimes\mathbf{e}_j\otimes\mathbf{e}_k) \bullet\mathbf{e}_m \\
& = C_{ijkl}~\varepsilon_{mn}~\delta_{ln}
(\mathbf{e}_k\bullet\mathbf{e}_m)(\mathbf{e}_i\otimes\mathbf{e}_j) = 
C_{ijkl}~\varepsilon_{mn}~\delta_{ln}~\delta_{km}~\mathbf{e}_i\otimes\mathbf{e}_j \\
& = C_{ijkl}~\varepsilon_{kl}
\end{align}

Hint 5 : Tensor product

Tensor Product of two tensors:

\begin{align}
\boldsymbol{A} & =A_{ij}~\mathbf{e}_i\otimes\mathbf{e}_j \\
\boldsymbol{B} & =B_{kl}~\mathbf{e}_k\otimes\mathbf{e}_l 
\end{align}

Tensor product:

\begin{align}
\boldsymbol{A}\otimes\boldsymbol{B} & = (A_{ij}~\mathbf{e}_i\otimes\mathbf{e}_j) \otimes 
 (B_{kl}~\mathbf{e}_k\otimes\mathbf{e}_l) \\
& = A_{ij} B_{kl} \mathbf{e}_i\otimes\mathbf{e}_j \otimes 
 \mathbf{e}_k\otimes\mathbf{e}_l
\end{align}

Hint 6: Vector transformations

Change of basis: Vector transformation rule


v^{'}_i = L_{ij} v_j

L_{ij} are the direction cosines.

\begin{align}
L_{11} & = \mathbf{e}_1^{'}\bullet\mathbf{e}_1; & 
L_{12} & = \mathbf{e}_1^{'}\bullet\mathbf{e}_2; & 
L_{13} & = \mathbf{e}_1^{'}\bullet\mathbf{e}_3 \\
L_{21} & = \mathbf{e}_2^{'}\bullet\mathbf{e}_1; & 
L_{22} & = \mathbf{e}_2^{'}\bullet\mathbf{e}_2; & 
L_{23} & = \mathbf{e}_2^{'}\bullet\mathbf{e}_3 \\
L_{31} & = \mathbf{e}_3^{'}\bullet\mathbf{e}_1; & 
L_{32} & = \mathbf{e}_3^{'}\bullet\mathbf{e}_2; & 
L_{33} & = \mathbf{e}_3^{'}\bullet\mathbf{e}_3 
\end{align}

In matrix form


\mathbf{v}^{'} = \mathbf{L}~\mathbf{v}; ~~ \mathbf{v} = \mathbf{L}^T~\mathbf{v}^{'}; 
~~ \mathbf{L}\mathbf{L}^T = \mathbf{I} \implies
\mathbf{L}^T = \mathbf{L}^{-1}

Other common form: Vector transformation rule


v^{'}_i = Q_{ji} v_j
\begin{align}
Q_{11} & = \mathbf{e}_1\bullet\mathbf{e}_1^{'}; & 
Q_{12} & = \mathbf{e}_1\bullet\mathbf{e}_2^{'}; & 
Q_{13} & = \mathbf{e}_1\bullet\mathbf{e}_3^{'} \\
Q_{21} & = \mathbf{e}_2\bullet\mathbf{e}_1^{'}; & 
Q_{22} & = \mathbf{e}_2\bullet\mathbf{e}_2^{'}; & 
Q_{23} & = \mathbf{e}_2\bullet\mathbf{e}_3^{'} \\
Q_{31} & = \mathbf{e}_3\bullet\mathbf{e}_1^{'}; & 
Q_{32} & = \mathbf{e}_3\bullet\mathbf{e}_2^{'}; & 
Q_{33} & = \mathbf{e}_3\bullet\mathbf{e}_3^{'} 
\end{align}

In matrix form


\mathbf{v}^{'} = \mathbf{Q}^T~\mathbf{v}; ~~ \mathbf{v} = \mathbf{Q}~\mathbf{v}^{'}; 
~~\mathbf{Q}\mathbf{Q}^T = \mathbf{I} \implies
\mathbf{Q}^T = \mathbf{Q}^{-1}

Hint 7: Tensor transformations

Change of basis: Tensor transformation rule


T^{'}_{ij} = L_{ip} L_{jq} T_{pq}

where L_{ij} are the direction cosines.

In matrix form,


\mathbf{T}^{'} = \mathbf{L} \mathbf{T} \mathbf{L}^{T}

Other common form


T^{'}_{ij} = Q_{pi} Q_{qj} T_{pq}

In matrix form,


\mathbf{T}^{'} = \mathbf{Q}^T \mathbf{T} \mathbf{Q}
This article is issued from Wikiversity - version of the Tuesday, January 08, 2008. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.