Nonlinear finite elements/Euler Bernoulli beams

< Nonlinear finite elements

Euler-Bernoulli Beam

Euler-Bernoulli beam

Displacements


\begin{align}
u_1 & = u_0(x) - z \cfrac{dw_0}{dx} \\
u_2 & = 0 \\
u_3 & = w_0(x) 
\end{align}

Strains


\varepsilon_{11} = \varepsilon_{xx}= 
 \varepsilon_{xx}^0 + z \varepsilon_{xx}^1

\begin{align}
\varepsilon_{xx}^0 & = \cfrac{du_0}{dx} + 
 \frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2 \\
\varepsilon_{xx}^1 & = -\cfrac{d^2w_0}{dx^2}
\end{align}

Strain-Displacement Relations


\varepsilon_{ij} = \frac{1}{2}\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right) +
 \frac{1}{2}\left(\frac{\partial u_m}{\partial x_i}\frac{\partial u_m}{\partial x_j}\right)

\begin{align}
\varepsilon_{11} & = \frac{1}{2}\left(\frac{\partial u_1}{\partial x_1} + \frac{\partial u_1}{\partial x_1}\right) +
 \frac{1}{2}\left(\frac{\partial u_1}{\partial x_1}\frac{\partial u_1}{\partial x_1}+
\frac{\partial u_2}{\partial x_1}\frac{\partial u_2}{\partial x_1}+
\frac{\partial u_3}{\partial x_1}\frac{\partial u_3}{\partial x_1} \right) \\
\varepsilon_{22} & = \frac{1}{2}\left(\frac{\partial u_2}{\partial x_2} + \frac{\partial u_2}{\partial x_2}\right) +
 \frac{1}{2}\left(\frac{\partial u_1}{\partial x_2}\frac{\partial u_1}{\partial x_2}+
\frac{\partial u_2}{\partial x_2}\frac{\partial u_2}{\partial x_2}+
\frac{\partial u_3}{\partial x_2}\frac{\partial u_3}{\partial x_2} \right) \\
\varepsilon_{33} & = \frac{1}{2}\left(\frac{\partial u_3}{\partial x_3} + \frac{\partial u_3}{\partial x_3}\right) +
 \frac{1}{2}\left(\frac{\partial u_1}{\partial x_3}\frac{\partial u_1}{\partial x_3}+
\frac{\partial u_2}{\partial x_3}\frac{\partial u_2}{\partial x_3}+
\frac{\partial u_3}{\partial x_3}\frac{\partial u_3}{\partial x_3} \right) \\
\varepsilon_{23} & = \frac{1}{2}\left(\frac{\partial u_2}{\partial x_3} + \frac{\partial u_3}{\partial x_2}\right) +
 \frac{1}{2}\left(\frac{\partial u_1}{\partial x_2}\frac{\partial u_1}{\partial x_3}+
\frac{\partial u_2}{\partial x_2}\frac{\partial u_2}{\partial x_3}+
\frac{\partial u_3}{\partial x_2}\frac{\partial u_3}{\partial x_3} \right) \\
\varepsilon_{31} & = \frac{1}{2}\left(\frac{\partial u_3}{\partial x_1} + \frac{\partial u_1}{\partial x_3}\right) +
 \frac{1}{2}\left(\frac{\partial u_1}{\partial x_3}\frac{\partial u_1}{\partial x_1}+
\frac{\partial u_2}{\partial x_3}\frac{\partial u_2}{\partial x_1}+
\frac{\partial u_3}{\partial x_3}\frac{\partial u_3}{\partial x_1} \right) \\
\varepsilon_{12} & = \frac{1}{2}\left(\frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1}\right) +
 \frac{1}{2}\left(\frac{\partial u_1}{\partial x_1}\frac{\partial u_1}{\partial x_2}+
\frac{\partial u_2}{\partial x_1}\frac{\partial u_2}{\partial x_2}+
\frac{\partial u_3}{\partial x_1}\frac{\partial u_3}{\partial x_2} \right)
\end{align}

The displacements


u_1 = u_0(x_1) - x_3 \cfrac{dw_0}{dx_1}~;~~
u_2 = 0~;~~
u_3 = w_0(x_1)

The derivatives

\begin{align}
\frac{\partial u_1}{\partial x_1} & = \cfrac{du_0}{dx_1} - x_3\cfrac{d^2w_0}{dx_1^2} ~;~~
& \frac{\partial u_1}{\partial x_2} & = 0 ~;~~ 
&\frac{\partial u_1}{\partial x_3} & = - \cfrac{dw_0}{dx_1} \\
\frac{\partial u_2}{\partial x_1} & = 0 ~;~~ 
& \frac{\partial u_2}{\partial x_2} & = 0 ~;~~ 
&\frac{\partial u_2}{\partial x_3} & = 0\\
\frac{\partial u_3}{\partial x_1} & = \cfrac{dw_0}{dx_1}~;~~
& \frac{\partial u_3}{\partial x_2} & = 0 ~;~~ 
&\frac{\partial u_3}{\partial x_3} & = 0
\end{align}

von Karman strains

The von Karman strains


\begin{align}
\varepsilon_{11} & = \cfrac{du_0}{dx_1} - x_3\cfrac{d^2w_0}{dx_1^2} + 
\frac{1}{2}\left[
\left(\cfrac{du_0}{dx_1}-x_3\cfrac{d^2w_0}{dx_1^2}\right)^2 +
 \left(\cfrac{dw_0}{dx_1}\right)^2\right] \\
\varepsilon_{22} & = 0 \\
\varepsilon_{33} & = \frac{1}{2}\left(\cfrac{dw_0}{dx_1}\right)^2 \\
\varepsilon_{23} & = 0 \\
\varepsilon_{31} & = 
\frac{1}{2}\left(\cfrac{dw_0}{dx_1}-\cfrac{dw_0}{dx_1}\right) -
 \frac{1}{2}\left[\left(\cfrac{du_0}{dx_1}-x_3\cfrac{d^2w_0}{dx_1^2}\right)
 \left(\cfrac{dw_0}{dx_1}\right)\right] \\
\varepsilon_{12} & = 0 
\end{align}

Equilibrium Equations

Balance of forces


\begin{align}
\cfrac{dN_{xx}}{dx} + f(x) & = 0 \\
\cfrac{d^2M_{xx}}{dx^2} + q(x) + 
 \cfrac{d}{dx}\left(N_{xx}\cfrac{dw_0}{dx}\right) & = 0
\end{align}

Stress Resultants

\begin{align}
N_{xx} & = \int_A \sigma_{xx}~ dA \\
M_{xx} & = \int_A z\sigma_{xx}~ dA 
\end{align}

Constitutive Relations

Stress-Strain equation


\sigma_{xx} = E \varepsilon_{xx}

Stress Resultant - Displacement relations


\begin{align}
N_{xx} & = A_{xx} \varepsilon_{xx}^0 + B_{xx} \varepsilon_{xx}^1 = 
 A_{xx}\left[\cfrac{du_0}{dx} + \frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2 \right] -
 B_{xx}\cfrac{d^2w_0}{dx^2} \\
M_{xx} & = B_{xx} \varepsilon_{xx}^0 + D_{xx} \varepsilon_{xx}^1 = 
 B_{xx}\left[\cfrac{du_0}{dx} + \frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2 \right] -
 D_{xx}\cfrac{d^2w_0}{dx^2} 
\end{align}

Extensional/Bending Stiffness


\begin{align}
A_{xx} & = \int_A E~dA\qquad \leftarrow \qquad
 \text{extensional stiffness}\\
B_{xx} & = \int_A zE~dA\qquad \leftarrow \qquad
 \text{extensional-bending stiffness}\\
D_{xx} & = \int_A z^2E~dA\qquad \leftarrow \qquad
 \text{bending stiffness}
\end{align}

If E is constant, and x-axis passes through centroid


\begin{align}
A_{xx} & = E \int_A ~dA = EA \\
B_{xx} & = E \int_A z~dA = 0 \\
D_{xx} & = E \int_A z^2~dA= EI
\end{align}

Weak Forms

Axial Equation


\begin{align}
 \int_{x_a}^{x_b} \cfrac{d(\delta u_0)}{dx} 
 \left[\cfrac{du_0}{dx} + \frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2\right]
 A_{xx}~dx & = 
 \int_{x_a}^{x_b} (\delta u_0) f~dx +\\
& \delta u_0(x_a) Q_1 + \delta u_0(x_b) Q_4 
\end{align}

where


\begin{align}
\delta u_0 & := v_1\\
Q_1 & := -N_{xx}(x_a)\\
Q_4 & := N_{xx}(x_b) 
\end{align}

Bending Equation


\begin{align}
\int_{x_a}^{x_b} \left\{\cfrac{d(\delta w_0)}{dx} \right. &
\left[\cfrac{du_0}{dx} + \cfrac{1}{2}~\left(\cfrac{dw_0}{dx}\right)^2\right] \cfrac{dw_0}{dx} A_{xx} +
\left.\cfrac{d^2(\delta w_0)}{dx^2} \left(\cfrac{d^2w_0}{dx^2}\right) D_{xx} \right\}~dx= \\
& \int_{x_a}^{x_b} (\delta w_0) q~dx + 
\delta w_0(x_a) Q_2 + \delta w_0(x_b) Q_5 + 
\delta \theta(x_a) Q_3 + 
\delta \theta(x_b) Q_6 ~.
\end{align}

where

\begin{align}
\delta w_0 & := v_2 & \delta \theta & := \cfrac{dv_2}{dx} \\
Q_2 & := -\left[\cfrac{dM_{xx}}{dx} + N_{xx}\cfrac{dw_0}{dx}\right]_{x_a} &
Q_5 & := \left[\cfrac{dM_{xx}}{dx} + N_{xx}\cfrac{dw_0}{dx}\right]_{x_b} \\
Q_3 & := -M_{xx} (x_a) &
Q_6 & := M_{xx} (x_b) 
\end{align}

Finite Element Model

Finite element model for Euler Bernoulli beam
\begin{align} 
u_0(x) & =u_1 \psi_1(x) + u_2 \psi_2(x) \\
w_0(x) & =w_1 \phi_1(x) + \theta_1 \phi_2(x) + w_2 \phi_3(x) +
 \theta_2 \phi_4(x) 
\end{align}

where \theta = -(dw_0/dx).

Hermite Cubic Shape Functions

Hermite shape functions for beam

Finite Element Equations


\begin{bmatrix}
\mathbf{K}^{11} & \vdots & \mathbf{K}^{12} \\
& \vdots &\\
\mathbf{K}^{21} & \vdots & \mathbf{K}^{22}
\end{bmatrix}
\begin{bmatrix}
\mathbf{u} \\\\ \mathbf{d}
\end{bmatrix}
= 
\begin{bmatrix}
\mathbf{F}^1 \\ \\ \mathbf{F}^2
\end{bmatrix}

where

\begin{align}
\mathbf{u} & = [u_1 \quad u_2]^T \\
\mathbf{d} & = [w_1 \quad \theta_1 \quad w_2 \quad \theta_2]^T 
\end{align}
\begin{align}
\mathbf{K}^{11} & = 2 \times 2; \qquad & \mathbf{K}^{12} & = 2 \times 4\\
\mathbf{K}^{21} & = 4 \times 2; \qquad & \mathbf{K}^{22} & = 4 \times 4
\end{align}

Symmetric Stiffness Matrix


 \begin{align}
 K_{ij}^{11} & = \int_{x_a}^{x_b} A_{xx}\cfrac{d\psi_i}{dx}\cfrac{d\psi_j}{dx}~dx \\
 K_{ij}^{12} & = \frac{1}{2} \int_{x_a}^{x_b} \left(A_{xx}\cfrac{dw_0}{dx}\right)
 \cfrac{d\psi_i}{dx} \cfrac{d\phi_j}{dx}~dx\\
 K_{ij}^{21} & = \frac{1}{2} \int_{x_a}^{x_b} \left(A_{xx} \cfrac{dw_0}{dx}\right) 
 \cfrac{d\phi_i}{dx}\cfrac{d\psi_j}{dx}~dx\\
 K_{ij}^{22} & = \int_{x_a}^{x_b}\left\{ 
 \frac{1}{2} A_{xx}
 \left[\cfrac{du_0}{dx}+\left(\cfrac{dw_0}{dx}\right)^2\right]
 \cfrac{d\phi_i}{dx}\cfrac{d\phi_j}{dx} + 
D_{xx}\cfrac{d^2\phi_i}{dx^2}\cfrac{d^2\phi_j}{dx^2}\right\}~dx 
 \end{align}

Load Vector


 \begin{align}
 F_i^1 & = \int_{x_a}^{x_b} \psi_i f~dx + \psi_i(x_a) Q_1 + \psi_i(x_b) Q_4 \\
 F_i^2 & = \int_{x_a}^{x_b} \phi_i q~dx + \phi_i(x_a) Q_2 + \phi_i(x_b) Q_5 + 
\cfrac{d\phi_i}{dx}(x_a) Q_3 + \cfrac{d\phi_i}{dx}(x_b) Q_6 
 \end{align}

Newton-Raphson Solution


 \mathbf{K}(\mathbf{U}) \mathbf{U} = \mathbf{F}

where

\begin{align}
 U_1 & = u_1, ~ U_2= u_2, ~ U_3= d_1, ~
 U_4= d_2, ~ U_5= d_3, ~ U_6= d_4 \\
 F_1 & = F^1_1, ~ F_2= F^1_2, ~ F_3= F^2_1, ~
 F_4= F^2_2, ~ F_5= F^2_3, ~ F_6= F^2_4 
\end{align}

The residual is


 \mathbf{R} = \mathbf{K} \mathbf{U} - \mathbf{F} ~.

For Newton iterations, we use the algorithm


 \mathbf{U}^{r+1} = \mathbf{U}^r - (\mathbf{T}^r)^{-1} \mathbf{R}^r

where the tangent stiffness matrix is given by


 \mathbf{T}^r = \frac{\partial \mathbf{R}^r}{\partial \mathbf{U}}; \quad\text{or}\quad
 T_{ij} = \frac{\partial R_i}{\partial U_j}, \qquad i=1 \dots 6, j=1 \dots 6~.

Tangent Stiffness Matrix


 \begin{align}
 i=1\dots2;~j=1\dots2 &: \\
& { T^{11}_{ij} = K^{11}_{ij}} \\ 
 \\
 i=1\dots2;~j=1\dots4 &: \\
& { T^{12}_{ij} = 2 K^{12}_{ij}} \\ 
 \\
 i=1\dots4;~j=1\dots2 &: \\
& { T^{21}_{ij} = 2 K^{21}_{ij}} \\
 \\
 i=1\dots4;~j=1\dots4 &: \\
& { T^{22}_{ij} = K^{22}_{ij} + 
 \frac{1}{2} \int_{x_a}^{x_b} A_{xx}\left[\cfrac{du_0}{dx} + 
 2\left(\cfrac{dw_0}{dx}\right)^2\right]
\cfrac{d\phi_i}{dx}\cfrac{d\phi_j}{dx}~dx }
 \end{align}

Load Steps

Recall


N_{xx} = 
 A_{xx}\left[\cfrac{du_0}{dx} + \frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2 \right] -
 {{B_{xx}}}~~\cfrac{d^2w_0}{dx^2}
F = \sum_{i=1}^N \Delta F_i
\mathbf{K}(\mathbf{U}_0) \mathbf{U}_1 = \Delta F_1
Stiffness of Euler-Bernoulli beam.
\mathbf{K}(\mathbf{U}_1) \mathbf{U}_2 = \Delta F_1 + \Delta F_2

Membrane Locking

Recall


\begin{bmatrix}
\mathbf{K}^{11} & \vdots & \mathbf{K}^{12} \\
& \vdots &\\
\mathbf{K}^{21} & \vdots & \mathbf{K}^{22}
\end{bmatrix}
\begin{bmatrix}
\mathbf{u} \\\\ \mathbf{d}
\end{bmatrix}
= 
\begin{bmatrix}
\mathbf{F}^1 \\ \\ \mathbf{F}^2
\end{bmatrix}

where


\begin{align}
K_{ij}^{11} & = \int_{x_a}^{x_b} A_{xx}\cfrac{d\psi_i}{dx}\cfrac{d\psi_j}{dx}~dx \\
K_{ij}^{12} & = \frac{1}{2} \int_{x_a}^{x_b} \left(A_{xx}\cfrac{dw_0}{dx}\right)
 \cfrac{d\psi_i}{dx} \cfrac{d\phi_j}{dx}~dx\\
K_{ij}^{21} & = \frac{1}{2} \int_{x_a}^{x_b} \left(A_{xx} \cfrac{dw_0}{dx}\right) 
 \cfrac{d\phi_i}{dx}\cfrac{d\psi_j}{dx}~dx\\
K_{ij}^{22} & = \int_{x_a}^{x_b}\left\{ 
 \frac{1}{2} A_{xx}
 \left[\cfrac{du_0}{dx}+\left(\cfrac{dw_0}{dx}\right)^2\right]
 \cfrac{d\phi_i}{dx}\cfrac{d\phi_j}{dx} + 
D_{xx}\cfrac{d^2\phi_i}{dx^2}\cfrac{d^2\phi_j}{dx^2}\right\}~dx 
 \end{align}
Mebrane locking in Euler-Bernoulli beam

For Hinged-Hinged

Membrane strain:


\varepsilon_{xx}^0 = 0

or


\cfrac{du_0}{dx} + \frac{1}{2}\left(\cfrac{dw_0}{dx}\right)^2 = 0

Hence, shape functions should be such that


\cfrac{du_0}{dx} \approx \left(\cfrac{dw_0}{dx}\right)^2

u_0 linear, w_0 cubic \implies Element Locks! Too stiff.

Selective Reduced Integration


  \begin{align}
    K_{ij}^{11} & = \int_{x_a}^{x_b} A_{xx}\cfrac{d\psi_i}{dx}\cfrac{d\psi_j}{dx}~dx\\
	K_{ij}^{12} & = \frac{1}{2} \int_{x_a}^{x_b} \left(A_{xx}\cfrac{dw_0}{dx}\right) \cfrac{d\psi_i}{dx} \cfrac{d\phi_j}{dx}~dx\\
	K_{ij}^{22} & = \int_{x_a}^{x_b}\left\{\frac{1}{2} A_{xx} \left[\cfrac{du_0}{dx}+\left(\cfrac{dw_0}{dx}\right)^2\right] \cfrac{d\phi_i}{dx}\cfrac{d\phi_j}{dx} + D_{xx}\cfrac{d^2\phi_i}{dx^2}\cfrac{d^2\phi_j}{dx^2}\right\}~dx
  \end{align}

Full integration


 n_{\text{gauss pt}} = \text{int}[(p+1)/2] + 1

Assume A_{xx} = constant.


\begin{align}
K_{ij}^{11} & = A_{xx} \int_{x_a}^{x_b} \cfrac{d\psi_i}{dx}\cfrac{d\psi_j}{dx}~dx \\
& = A_{xx} \int_{-1}^{1} \left(J^{-1}\cfrac{d\psi_i(\xi)}{d\xi}\right)
\left(J^{-1}\cfrac{d\psi_j(\xi)}{d\xi}\right)J~d\xi 
= A_{xx} \int_{-1}^{1} F(\xi)~d\xi \\
& \approx A_{xx} W_1 F(\xi_1) \leftarrow 
{ \text{one-point integration}}
\end{align}

\begin{align}
K_{ij}^{12} & = \frac{1}{2} \int_{x_a}^{x_b} \left(A_{xx}\cfrac{dw_0}{dx}\right)
 \cfrac{d\psi_i}{dx} \cfrac{d\phi_j}{dx}~dx\\
 & = \cfrac{A_{xx}}{2} \int_{-1}^{1} 
 \left(\sum_{i=1}^4 w_i J^{-1}\cfrac{d\phi_i(\xi)}{d\xi}\right)
 \left(J^{-1}\cfrac{d\psi_i(\xi)}{d\xi}\right)
 \left(J^{-1}\cfrac{d\phi_j(\xi)}{d\xi}\right)~dx \\
 & \approx A_{xx}\left[ W_1 F(\xi_1) + W_2 F(\xi_2) + W_3 F(\xi_3)\right]
\leftarrow { \text{full integration}} \\
 & \approx A_{xx}\left[ W_1 F(\xi_1) + W_2 F(\xi_2)\right]
\leftarrow { \text{reduced integration}} 
\end{align}
This article is issued from Wikiversity - version of the Tuesday, November 20, 2012. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.