Nonlinear finite elements/Balance of linear momentum

< Nonlinear finite elements

Statement of the balance of linear momentum

The balance of linear momentum can be expressed as:


  \rho~\dot{\mathbf{v}} - \boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b} = 0 
 

where \rho(\mathbf{x},t) is the mass density, \mathbf{v}(\mathbf{x},t) is the velocity, \boldsymbol{\sigma}(\mathbf{x},t) is the Cauchy stress, and \rho~\mathbf{b} is the body force density.

Proof

Recall the general equation for the balance of a physical quantity


\cfrac{d}{dt}\left[\int_{\Omega} f(\mathbf{x},t)~\text{dV}\right] = 
\int_{\partial{\Omega}} f(\mathbf{x},t)[u_n(\mathbf{x},t) - \mathbf{v}(\mathbf{x},t)\cdot\mathbf{n}(\mathbf{x},t)]~\text{dA} + 
\int_{\partial{\Omega}} g(\mathbf{x},t)~\text{dA} + \int_{\Omega} h(\mathbf{x},t)~\text{dV} ~.

In this case the physical quantity of interest is the momentum density, i.e., f(\mathbf{x},t) = \rho(\mathbf{x},t)~\mathbf{v}(\mathbf{x},t). The source of momentum flux at the surface is the surface traction, i.e., g(\mathbf{x},t) = \mathbf{t}. The source of momentum inside the body is the body force, i.e., h(\mathbf{x},t) = \rho(\mathbf{x},t)~\mathbf{b}(\mathbf{x},t). Therefore, we have


\cfrac{d}{dt}\left[\int_{\Omega} \rho~\mathbf{v}~\text{dV}\right] = 
\int_{\partial{\Omega}} \rho~\mathbf{v}[u_n - \mathbf{v}\cdot\mathbf{n}]~\text{dA} + 
\int_{\partial{\Omega}} \mathbf{t}~\text{dA} + \int_{\Omega} \rho~\mathbf{b}~\text{dV} ~.

The surface tractions are related to the Cauchy stress by


 \mathbf{t} = \boldsymbol{\sigma}\cdot\mathbf{n} ~.

Therefore,


\cfrac{d}{dt}\left[\int_{\Omega} \rho~\mathbf{v}~\text{dV}\right] = 
\int_{\partial{\Omega}} \rho~\mathbf{v}[u_n - \mathbf{v}\cdot\mathbf{n}]~\text{dA} + 
\int_{\partial{\Omega}} \boldsymbol{\sigma}\cdot\mathbf{n}~\text{dA} + \int_{\Omega} \rho~\mathbf{b}~\text{dV} ~.

Let us assume that \Omega is an arbitrary fixed control volume. Then,


\int_{\Omega} \frac{\partial }{\partial t}(\rho~\mathbf{v})~\text{dV} = 
- \int_{\partial{\Omega}} \rho~\mathbf{v}~(\mathbf{v}\cdot\mathbf{n})~\text{dA} + 
\int_{\partial{\Omega}} \boldsymbol{\sigma}\cdot\mathbf{n}~\text{dA} + \int_{\Omega} \rho~\mathbf{b}~\text{dV} ~.

Now, from the definition of the tensor product we have (for all vectors \mathbf{a})


 (\mathbf{u}\otimes\mathbf{v})\cdot\mathbf{a} = (\mathbf{a}\cdot\mathbf{v})~\mathbf{u} ~.

Therefore,


\int_{\Omega} \frac{\partial }{\partial t}(\rho~\mathbf{v})~\text{dV} = 
- \int_{\partial{\Omega}} \rho~(\mathbf{v}\otimes\mathbf{v})\cdot\mathbf{n}~\text{dA} + 
\int_{\partial{\Omega}} \boldsymbol{\sigma}\cdot\mathbf{n}~\text{dA} + \int_{\Omega} \rho~\mathbf{b}~\text{dV} ~.

Using the divergence theorem


\int_{\Omega} \boldsymbol{\nabla} \bullet \mathbf{v}~\text{dV} = \int_{\partial{\Omega}} \mathbf{v}\cdot\mathbf{n}~\text{dA}

we have


\int_{\Omega} \frac{\partial }{\partial t}(\rho~\mathbf{v})~\text{dV} = 
- \int_{\Omega} \boldsymbol{\nabla} \bullet [\rho~(\mathbf{v}\otimes\mathbf{v})]~\text{dV} + 
\int_{\Omega} \boldsymbol{\nabla} \bullet \boldsymbol{\sigma}~\text{dV} + \int_{\Omega} \rho~\mathbf{b}~\text{dV}

or,


\int_{\Omega}\left[
\frac{\partial }{\partial t}(\rho~\mathbf{v}) + \boldsymbol{\nabla} \bullet [(\rho~\mathbf{v})\otimes\mathbf{v})] - 
\boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b}\right]~\text{dV} = 0 ~.

Since \Omega is arbitrary, we have


\frac{\partial }{\partial t}(\rho~\mathbf{v}) + \boldsymbol{\nabla} \bullet [(\rho~\mathbf{v})\otimes\mathbf{v})] - 
\boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b} = 0~.

Using the identity


 \boldsymbol{\nabla} \bullet (\mathbf{u}\otimes\mathbf{v}) = (\boldsymbol{\nabla} \bullet \mathbf{v})\mathbf{u} + (\boldsymbol{\nabla}\mathbf{u})\cdot\mathbf{v}

we get


\frac{\partial \rho}{\partial t}~\mathbf{v} + \rho~\frac{\partial \mathbf{v}}{\partial t} + 
 (\boldsymbol{\nabla} \bullet \mathbf{v})(\rho\mathbf{v}) + \boldsymbol{\nabla} (\rho~\mathbf{v})\cdot\mathbf{v} - 
\boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b} = 0

or,


\left[\frac{\partial \rho}{\partial t} + \rho~\boldsymbol{\nabla} \bullet \mathbf{v}\right]\mathbf{v} + 
\rho~\frac{\partial \mathbf{v}}{\partial t} + \boldsymbol{\nabla} (\rho~\mathbf{v})\cdot\mathbf{v} - 
\boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b} = 0

Using the identity


\boldsymbol{\nabla} (\varphi~\mathbf{v}) = \varphi~\boldsymbol{\nabla}\mathbf{v} + \mathbf{v}\otimes(\boldsymbol{\nabla} \varphi)

we get


\left[\frac{\partial \rho}{\partial t} + \rho~\boldsymbol{\nabla} \bullet \mathbf{v}\right]\mathbf{v} + 
\rho~\frac{\partial \mathbf{v}}{\partial t} + 
\left[\rho~\boldsymbol{\nabla}\mathbf{v} + \mathbf{v}\otimes(\boldsymbol{\nabla} \rho)\right]\cdot\mathbf{v} - 
\boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b} = 0

From the definition


 (\mathbf{u}\otimes\mathbf{v})\cdot\mathbf{a} = (\mathbf{a}\cdot\mathbf{v})~\mathbf{u}

we have


 [\mathbf{v}\otimes(\boldsymbol{\nabla} \rho)]\cdot\mathbf{v} = [\mathbf{v}\cdot(\boldsymbol{\nabla} \rho)]~\mathbf{v} ~.

Hence,


\left[\frac{\partial \rho}{\partial t} + \rho~\boldsymbol{\nabla} \bullet \mathbf{v}\right]\mathbf{v} + 
\rho~\frac{\partial \mathbf{v}}{\partial t} + 
\rho~\boldsymbol{\nabla}\mathbf{v}\cdot\mathbf{v} +[\mathbf{v}\cdot(\boldsymbol{\nabla} \rho)]~\mathbf{v} -
\boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b} = 0

or,


\left[\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \rho\cdot\mathbf{v} + \rho~\boldsymbol{\nabla} \bullet \mathbf{v}\right]\mathbf{v} +
\rho~\frac{\partial \mathbf{v}}{\partial t} + \rho~\boldsymbol{\nabla}\mathbf{v}\cdot\mathbf{v} -
\boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b} = 0 ~.

The material time derivative of \rho is defined as


\dot{\rho} = \frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \rho\cdot\mathbf{v} ~.

Therefore,


\left[\dot{\rho} + \rho~\boldsymbol{\nabla} \bullet \mathbf{v}\right]\mathbf{v} +
\rho~\frac{\partial \mathbf{v}}{\partial t} + \rho~\boldsymbol{\nabla}\mathbf{v}\cdot\mathbf{v} -
\boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b} = 0 ~.

From the balance of mass, we have


\dot{\rho} + \rho~\boldsymbol{\nabla} \bullet \mathbf{v}= 0 ~.

Therefore,


\rho~\frac{\partial \mathbf{v}}{\partial t} + \rho~\boldsymbol{\nabla}\mathbf{v}\cdot\mathbf{v} -
\boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b} = 0 ~.

The material time derivative of \mathbf{v} is defined as


\dot{\mathbf{v}} = \frac{\partial \mathbf{v}}{\partial t} + \boldsymbol{\nabla} \mathbf{v}\cdot\mathbf{v} ~.

Hence,


 {
\rho~\dot{\mathbf{v}} - \boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b} = 0 ~.
 }
This article is issued from Wikiversity - version of the Saturday, September 12, 2009. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.