Nonlinear finite elements/Balance of angular momentum

< Nonlinear finite elements

Statement of the balance of angular momentum

The balance of angular momentum in an inertial frame can be expressed as:


  \boldsymbol{\sigma}= \boldsymbol{\sigma}^T
 

Proof

We assume that there are no surface couples on \partial{\Omega} or body couples in \Omega. Recall the general balance equation


\cfrac{d}{dt}\left[\int_{\Omega} f(\mathbf{x},t)~\text{dV}\right] = 
\int_{\partial{\Omega}} f(\mathbf{x},t)[u_n(\mathbf{x},t) - \mathbf{v}(\mathbf{x},t)\cdot\mathbf{n}(\mathbf{x},t)]~\text{dA} + 
\int_{\partial{\Omega}} g(\mathbf{x},t)~\text{dA} + \int_{\Omega} h(\mathbf{x},t)~\text{dV} ~.

In this case, the physical quantity to be conserved the angular momentum density, i.e., f = \mathbf{x}\times(\rho~\mathbf{v}). The angular momentum source at the surface is then g = \mathbf{x}\times\mathbf{t} and the angular momentum source inside the body is h = \mathbf{x}\times(\rho~\mathbf{b}). The angular momentum and moments are calculated with respect to a fixed origin. Hence we have


\cfrac{d}{dt}\left[\int_{\Omega} \mathbf{x}\times(\rho~\mathbf{v})~\text{dV}\right] = 
\int_{\partial{\Omega}} [\mathbf{x}\times(\rho~\mathbf{v})]
 [u_n - \mathbf{v}\cdot\mathbf{n}]~\text{dA} + 
\int_{\partial{\Omega}} \mathbf{x}\times\mathbf{t}~\text{dA} + 
\int_{\Omega} \mathbf{x}\times(\rho~\mathbf{b})~\text{dV} ~.

Assuming that \Omega is a control volume, we have


\int_{\Omega} \mathbf{x}\times\left[\cfrac{\partial}{\partial t}(\rho~\mathbf{v})\right]~\text{dV} = 
- \int_{\partial{\Omega}} [\mathbf{x}\times(\rho~\mathbf{v})][\mathbf{v}\cdot\mathbf{n}]~\text{dA} + 
\int_{\partial{\Omega}} \mathbf{x}\times\mathbf{t}~\text{dA} + 
\int_{\Omega} \mathbf{x}\times(\rho~\mathbf{b})~\text{dV} ~.

Using the definition of a tensor product we can write


[\mathbf{x}\times(\rho~\mathbf{v})][\mathbf{v}\cdot\mathbf{n}] = 
 [[\mathbf{x}\times(\rho~\mathbf{v})]\otimes\mathbf{v}]\cdot\mathbf{n} ~.

Also, \mathbf{t} = \boldsymbol{\sigma}\cdot\mathbf{n}. Therefore we have


\int_{\Omega} \mathbf{x}\times\left[\cfrac{\partial}{\partial t}(\rho~\mathbf{v})\right]~\text{dV} = 
- \int_{\partial{\Omega}} [[\mathbf{x}\times(\rho~\mathbf{v})]\otimes\mathbf{v}]\cdot\mathbf{n} ~\text{dA}
+ \int_{\partial{\Omega}} \mathbf{x}\times(\boldsymbol{\sigma}\cdot\mathbf{n})~\text{dA} 
+ \int_{\Omega} \mathbf{x}\times(\rho~\mathbf{b})~\text{dV} ~.

Using the divergence theorem, we get


\int_{\Omega} \mathbf{x}\times\left[\cfrac{\partial}{\partial t}(\rho~\mathbf{v})\right]~\text{dV} = 
- \int_{\Omega} \boldsymbol{\nabla} \bullet [[\mathbf{x}\times(\rho~\mathbf{v})]\otimes\mathbf{v}]~\text{dV}
+ \int_{\partial{\Omega}} \mathbf{x}\times(\boldsymbol{\sigma}\cdot\mathbf{n})~\text{dA} 
+ \int_{\Omega} \mathbf{x}\times(\rho~\mathbf{b})~\text{dV} ~.

To convert the surface integral in the above equation into a volume integral, it is convenient to use index notation. Thus,


 \left[\int_{\partial{\Omega}} \mathbf{x}\times(\boldsymbol{\sigma}\cdot\mathbf{n})~\text{dA}\right]_i = 
 \int_{\partial{\Omega}} e_{ijk}~x_j~\sigma_{kl}~n_l~\text{dA}= 
 \int_{\partial{\Omega}} A_{il}~n_l~\text{dA}= 
 \int_{\partial{\Omega}} \boldsymbol{A}\cdot\mathbf{n}~\text{dA}

where [~]_i represents the i-th component of the vector. Using the divergence theorem


 \int_{\partial{\Omega}} \boldsymbol{A}\cdot\mathbf{n}~\text{dA} = \int_{\Omega} \boldsymbol{\nabla} \bullet \boldsymbol{A}~\text{dV}
 = \int_{\Omega} \frac{\partial A_{il}}{\partial x_l}~\text{dV}
 = \int_{\Omega} \frac{\partial }{\partial x_l}(e_{ijk}~x_j~\sigma_{kl})~\text{dV}~.

Differentiating,


 \int_{\partial{\Omega}} \boldsymbol{A}\cdot\mathbf{n}~\text{dA} 
 = \int_{\Omega} \left[
 e_{ijk}~\delta_{jl}~\sigma_{kl} +
 e_{ijk}~x_j~\frac{\partial \sigma_{kl}}{\partial x_l}\right]~\text{dV}
 = \int_{\Omega} \left[
 e_{ijk}~\sigma_{kj} +
 e_{ijk}~x_j~\frac{\partial \sigma_{kl}}{\partial x_l}\right]~\text{dV} 
 = \int_{\Omega} \left[
 e_{ijk}~\sigma_{kj} +
 e_{ijk}~x_j~[\boldsymbol{\nabla} \bullet \boldsymbol{\sigma}]_l\right]~\text{dV} ~.

Expressed in direct tensor notation,


 \int_{\partial{\Omega}} \boldsymbol{A}\cdot\mathbf{n}~\text{dA} 
 = \int_{\Omega} \left[
 [\mathcal{E}:\boldsymbol{\sigma}^T]_i + [\mathbf{x}\times(\boldsymbol{\nabla} \bullet \boldsymbol{\sigma})]_i\right]~\text{dV}

where \mathcal{E} is the third-order permutation tensor. Therefore,


 \left[\int_{\partial{\Omega}} \mathbf{x}\times(\boldsymbol{\sigma}\cdot\mathbf{n})~\text{dA}\right]_i = 
 = \int_{\Omega} \left[
 [\mathcal{E}:\boldsymbol{\sigma}^T]_i + [\mathbf{x}\times(\boldsymbol{\nabla} \bullet \boldsymbol{\sigma})]_i\right]~\text{dV}

or,


 \int_{\partial{\Omega}} \mathbf{x}\times(\boldsymbol{\sigma}\cdot\mathbf{n})~\text{dA} = 
 = \int_{\Omega} \left[
 \mathcal{E}:\boldsymbol{\sigma}^T + \mathbf{x}\times(\boldsymbol{\nabla} \bullet \boldsymbol{\sigma})\right]~\text{dV} ~.

The balance of angular momentum can then be written as


\int_{\Omega} \mathbf{x}\times\left[\cfrac{\partial}{\partial t}(\rho~\mathbf{v})\right]~\text{dV} = 
- \int_{\Omega} \boldsymbol{\nabla} \bullet [[\mathbf{x}\times(\rho~\mathbf{v})]\otimes\mathbf{v}]~\text{dV}
+ \int_{\Omega} \left[
 \mathcal{E}:\boldsymbol{\sigma}^T + \mathbf{x}\times(\boldsymbol{\nabla} \bullet \boldsymbol{\sigma})\right]~\text{dV} 
+ \int_{\Omega} \mathbf{x}\times(\rho~\mathbf{b})~\text{dV} ~.

Since \Omega is an arbitrary volume, we have


\mathbf{x}\times\left[\cfrac{\partial}{\partial t}(\rho~\mathbf{v})\right] = 
- \boldsymbol{\nabla} \bullet [[\mathbf{x}\times(\rho~\mathbf{v})]\otimes\mathbf{v}]
+ \mathcal{E}:\boldsymbol{\sigma}^T + \mathbf{x}\times(\boldsymbol{\nabla} \bullet \boldsymbol{\sigma})
+ \mathbf{x}\times(\rho~\mathbf{b})

or,


{\mathbf{x}}\times
 {\left[\frac{\partial }{\partial t}(\rho~\mathbf{v}) - \boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b} \right]} = 
- \boldsymbol{\nabla} \bullet [[\mathbf{x}\times(\rho~\mathbf{v})]\otimes\mathbf{v}]
+ \mathcal{E}:\boldsymbol{\sigma}^T ~.

Using the identity,


\boldsymbol{\nabla} \bullet (\mathbf{u}\otimes\mathbf{v}) = (\boldsymbol{\nabla} \bullet \mathbf{v})\mathbf{u} + (\boldsymbol{\nabla}\mathbf{u})\cdot\mathbf{v}

we get


\boldsymbol{\nabla} \bullet [[\mathbf{x}\times(\rho~\mathbf{v})]\otimes\mathbf{v}] =
(\boldsymbol{\nabla} \bullet \mathbf{v})[\mathbf{x}\times(\rho~\mathbf{v})] + 
(\boldsymbol{\nabla} [\mathbf{x}\times(\rho~\mathbf{v})])\cdot\mathbf{v} ~.

The second term on the right can be further simplified using index notation as follows.


\begin{align}
 \left[(\boldsymbol{\nabla} [\mathbf{x}\times(\rho~\mathbf{v})])\cdot\mathbf{v}\right]_i = 
 \left[(\boldsymbol{\nabla} [\rho~(\mathbf{x}\times\mathbf{v})])\cdot\mathbf{v}\right]_i & = 
 \frac{\partial }{\partial x_l}(\rho~e_{ijk}~x_j~v_k)~v_l \\
 & = e_{ijk}\left[
 \frac{\partial \rho}{\partial x_l}~x_j~v_k~v_l+ 
 \rho~\frac{\partial x_j}{\partial x_l}~v_k~v_l +
 \rho~x_j~\frac{\partial v_k}{\partial x_l}~v_l\right] \\
 & = (e_{ijk}~x_j~v_k)~\left(\frac{\partial \rho}{\partial x_l}~v_l\right)+ 
 \rho~(e_{ijk}~\delta_{jl}~v_k~v_l) +
 e_{ijk}~x_j~\left(\rho~\frac{\partial v_k}{\partial x_l}~v_l\right) \\
 & = [(\mathbf{x}\times\mathbf{v})(\boldsymbol{\nabla} \rho\cdot\mathbf{v}) + 
 \rho~\mathbf{v}\times\mathbf{v} + 
 \mathbf{x}\times(\rho~\boldsymbol{\nabla}\mathbf{v}\cdot\mathbf{v})]_i \\
 & = [(\mathbf{x}\times\mathbf{v})(\boldsymbol{\nabla} \rho\cdot\mathbf{v}) + 
 \mathbf{x}\times(\rho~\boldsymbol{\nabla}\mathbf{v}\cdot\mathbf{v})]_i ~.
\end{align}

Therefore we can write


\boldsymbol{\nabla} \bullet [[\mathbf{x}\times(\rho~\mathbf{v})]\otimes\mathbf{v}] =
(\rho~\boldsymbol{\nabla} \bullet \mathbf{v})(\mathbf{x}\times~\mathbf{v}) + 
(\boldsymbol{\nabla} \rho\cdot\mathbf{v})(\mathbf{x}\times\mathbf{v}) + 
\mathbf{x}\times(\rho~\boldsymbol{\nabla}\mathbf{v}\cdot\mathbf{v})] ~.

The balance of angular momentum then takes the form


{\mathbf{x}}\times
 {\left[\frac{\partial }{\partial t}(\rho~\mathbf{v}) - \boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b} \right]} = 
- (\rho~\boldsymbol{\nabla} \bullet \mathbf{v})(\mathbf{x}\times~\mathbf{v}) - 
(\boldsymbol{\nabla} \rho\cdot\mathbf{v})(\mathbf{x}\times\mathbf{v}) - 
\mathbf{x}\times(\rho~\boldsymbol{\nabla}\mathbf{v}\cdot\mathbf{v}) 
+ \mathcal{E}:\boldsymbol{\sigma}^T

or,


{\mathbf{x}}\times
 {\left[\frac{\partial }{\partial t}(\rho~\mathbf{v}) + \rho~\boldsymbol{\nabla}\mathbf{v}\cdot\mathbf{v} 
- \boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b} \right]} = 
- (\rho~\boldsymbol{\nabla} \bullet \mathbf{v})(\mathbf{x}\times~\mathbf{v}) - 
(\boldsymbol{\nabla} \rho\cdot\mathbf{v})(\mathbf{x}\times\mathbf{v}) 
+ \mathcal{E}:\boldsymbol{\sigma}^T

or,


{\mathbf{x}}\times
 {\left[\rho\frac{\partial \mathbf{v}}{\partial t} + \frac{\partial \rho}{\partial t}~\mathbf{v} + 
\rho~\boldsymbol{\nabla}\mathbf{v}\cdot\mathbf{v} 
- \boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b} \right]} = 
- (\rho~\boldsymbol{\nabla} \bullet \mathbf{v})(\mathbf{x}\times~\mathbf{v}) - 
(\boldsymbol{\nabla} \rho\cdot\mathbf{v})(\mathbf{x}\times\mathbf{v}) 
+ \mathcal{E}:\boldsymbol{\sigma}^T

The material time derivative of \mathbf{v} is defined as


\dot{\mathbf{v}} = \frac{\partial \mathbf{v}}{\partial t} + \boldsymbol{\nabla} \mathbf{v}\cdot\mathbf{v} ~.

Therefore,


{\mathbf{x}}\times
 {\left[\rho~\dot{\mathbf{v}} - \boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b} \right]} = 
- \mathbf{x}\times\cfrac{\partial \rho}{\partial t}~\mathbf{v} + 
- (\rho~\boldsymbol{\nabla} \bullet \mathbf{v})(\mathbf{x}\times~\mathbf{v}) - 
(\boldsymbol{\nabla} \rho\cdot\mathbf{v})(\mathbf{x}\times\mathbf{v}) 
+ \mathcal{E}:\boldsymbol{\sigma}^T ~.

Also, from the conservation of linear momentum


\rho~\dot{\mathbf{v}} - \boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b} = 0 ~.

Hence,


\begin{align}
0 & = \mathbf{x}\times\cfrac{\partial\rho}{\partial t}~\mathbf{v} + 
(\rho~\boldsymbol{\nabla} \bullet \mathbf{v})(\mathbf{x}\times~\mathbf{v}) + 
(\boldsymbol{\nabla} \rho\cdot\mathbf{v})(\mathbf{x}\times\mathbf{v}) 
- \mathcal{E}:\boldsymbol{\sigma}^T \\
& = \left(\frac{\partial \rho}{\partial t} + \rho\boldsymbol{\nabla} \bullet \mathbf{v} + 
 \boldsymbol{\nabla} \rho\cdot\mathbf{v} \right)(\mathbf{x}\times\mathbf{v}) 
- \mathcal{E}:\boldsymbol{\sigma}^T ~.
\end{align}

The material time derivative of \rho is defined as


\dot{\rho} = \frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \rho\cdot\mathbf{v} ~.

Hence,


(\dot{\rho} + \rho~\boldsymbol{\nabla} \bullet \mathbf{v})(\mathbf{x}\times\mathbf{v})
- \mathcal{E}:\boldsymbol{\sigma}^T = 0 ~.

From the balance of mass


\dot{\rho} + \rho~\boldsymbol{\nabla} \bullet \mathbf{v} = 0 ~.

Therefore,


 \mathcal{E}:\boldsymbol{\sigma}^T = 0 ~.

In index notation,


 e_{ijk}~\sigma_{kj} = 0 ~.

Expanding out, we get


 \sigma_{12} - \sigma_{21} = 0 ~;~~
 \sigma_{23} - \sigma_{32} = 0 ~;~~
 \sigma_{31} - \sigma_{13} = 0 ~.

Hence,


 {
 \boldsymbol{\sigma} = \boldsymbol{\sigma}^T
 }
This article is issued from Wikiversity - version of the Saturday, September 12, 2009. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.