Introduction to Elasticity/Torsion of noncircular cylinders

< Introduction to Elasticity

Torsion of Non-Circular Cylinders

Torsion of a noncircular cylinder

About the problem

Assumptions:


   \phi = \alpha x_3 \,

where \alpha\, is the twist per unit length.

Find:

Solution:

Displacements

\begin{align}
 u_1 & = r\cos(\phi+\theta) - r\cos\theta = x_1(\cos\phi-1)-x_2\sin\phi \\
 u_2 & = r\sin(\phi+\theta) - r\sin\theta = x_1\sin\phi+x_2(\cos\phi-1)\\
 u_3 & = \alpha\psi(x_1,x_2)
\end{align}

where \psi(x_1,x_2)\, is the warping function.

If \phi = \alpha x_3 << 1 \, (small strain),

\text{(10)} \qquad 
 {
 u_1 \approx -\alpha x_2 x_3 ~;~~ u_2 \approx \alpha x_1 x_3 ~;~~
 u_3 = \alpha\psi(x_1,x_2)
 }

Strains


\varepsilon_{ij} = \frac{1}{2}\left(u_{i,j} + u_{j,i}\right)

Therefore,

\begin{align}
\varepsilon_{11} & = \frac{1}{2}\left(0 + 0\right) = 0 \\
\varepsilon_{22} & = \frac{1}{2}\left(0 + 0\right) = 0 \\
\varepsilon_{33} & = \frac{1}{2}\left(0 + 0\right) = 0 \\
\varepsilon_{kk} & = \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33} = 0 \\
\varepsilon_{12} & = \frac{1}{2}\left(-\alpha x_3 + \alpha x_3 \right) = 0 \\
\varepsilon_{23} & = \frac{1}{2}\left(\alpha\psi_{,2} + \alpha x_1\right)
\text{(11)} \qquad  \\
\varepsilon_{31} & = \frac{1}{2}\left(\alpha\psi_{,1} - \alpha x_2\right)
\text{(12)} \qquad 
\end{align}

Stresses


\sigma_{ij} = 2\mu\varepsilon_{ij} + \lambda\varepsilon_{kk}\delta_{ij}

Therefore,

\begin{align}
\sigma_{11} & = 0 \\
\sigma_{22} & = 0 \\
\sigma_{33} & = 0 \\
\sigma_{kk} & = 0 \\
\sigma_{12} & = 0 \\
\sigma_{23} & = \mu\alpha(\psi_{,2} + x_1) \text{(13)} \qquad \\
\sigma_{31} & = \mu\alpha(\psi_{,1} - x_1) \text{(14)} \qquad  
\end{align}

Equilibrium


\sigma_{ji,j} = 0 ~~~~ \text{no body forces.}

Therefore,

\begin{align}
\sigma_{11,1} + \sigma_{21,2} + \sigma_{31,3} = 0 & \Rightarrow ~~ 0 = 0 \\
\sigma_{12,1} + \sigma_{22,2} + \sigma_{32,3} = 0 & \Rightarrow ~~ 0 = 0 \\
\sigma_{13,1} + \sigma_{23,2} + \sigma_{33,3} = 0 & \Rightarrow ~~
 \mu\alpha(\psi_{,11}+\psi_{,22}) = \mu\alpha\nabla^2{\psi} = 0 
 \text{(15)} \qquad 
\end{align}

Internal Tractions

Boundary Conditions on Lateral Surfaces

We parameterize the boundary curve \partial S using


\mathbf{x} = \tilde{\mathbf{x}}(s) ~,~~ 0 \le s \le l~~;~~~ 
\tilde{\mathbf{x}}(0) = \tilde{\mathbf{x}}(l)

The tangent vector to s is


\widehat{\boldsymbol{\nu}} = \frac{d\mathbf{x}}{ds} ~\text{and}~~ \widehat{\mathbf{n}}{} = \widehat{\boldsymbol{\nu}}\times\widehat{\mathbf{e}}_{3}
~~\Rightarrow ~~~ \widehat{\mathbf{n}}{} = \frac{dx_2}{ds} \widehat{\mathbf{e}}{1} - \frac{dx_1}{ds} \widehat{\mathbf{e}}_{2}

The tractions t_1\, and t_2\, on the lateral surface are identically zero. However, to satisfy the BC t_3 = 0\,, we need


t_3 = n_1 \sigma_{13} + n_2 \sigma_{23} = 0 ~~\Rightarrow ~~~
\left(\psi_{,1} - x_2\right) n_1 + 
\left(\psi_{,2} + x_1\right) n_2= 0

or,

 \text{(16)} \qquad 
\left(\psi_{,1} - x_2\right) \frac{dx_2}{ds} + 
\left(\psi_{,2} + x_1\right) \frac{dx_1}{ds}= 0

Boundary Conditions on End Surfaces


The traction distribution is statically equivalent to the torque \mathbf{T}\,. At x_3 = L\,,

 
t_1 = \sigma_{13}~;~~ t_2 = \sigma_{23}~;~~ t_3 = \sigma_{33} = 0 \,

Therefore,


F_1 = \int_S \sigma_{13}~dS = \mu\alpha\int_S(\psi_{,1}-x_2)~dS

From equilibrium,

\begin{align}
\nabla^2{\psi} = 0 ~~\Rightarrow~~~ 
\psi_{,1}-x_2 & = (\psi_{,1}-x_2) + x_1(\psi_{,11} + \psi_{,22}) \\
& = \psi_{,1} + x_1\psi_{,11} - x_2 + x_1\psi_{,22} \\
& = (x_1\psi_{,1} - x_1x_2)_{,1} + (x_1\psi_{,2} + x_1x_1)_{,2} \\
& = \left[x_1(\psi_{,1} - x_2)\right]_{,1} + 
\left[x_1(\psi_{,2} + x_1)\right]_{,2} 
\end{align}

Hence,

\text{(17)} \qquad 
F_1 = \mu\alpha\int_S\left[x_1(\psi_{,1} - x_2)\right]_{,1} + 
\left[x_1(\psi_{,2} + x_1)\right]_{,2} dS

The Green-Riemann Theorem


If P = f(x_1,x_2)\, and Q = q(x_1,x_2)\, then


 \int_S (Q_{,1} - P_{,2}) dS = \oint_{\partial S} (P dx_1 + Q dx_2)

with the integration direction such that S is to the left.

Applying the Green-Riemann theorem to equation (17), and using equation (16)

\text{(18)} \qquad 
F_1 = \mu\alpha\oint_{\partial S}
 -x_1(\psi_{,2} + x_1)dx_1 + x_1(\psi_{,1} - x_2)dx_2 = 0

Similarly, we can show that F_2 = 0\,. F_3 = 0\, since t_3 = 0\,.

The moments about the x_1\, and x_2\, axes are also zero.

The moment about the x_3\, axis is


M_3 = \int_S (x_1\sigma_{23} - x_2\sigma_{13}) dS
= \mu\alpha\int_S(x_1\psi_{,2} + x_1^2 - x_2\psi_1 + x_2^2) dS
= \mu\alpha\tilde{J}

where J\, is the torsion constant. Since M_3 = T\,, we have


\alpha = \frac{T}{\mu\tilde{J}}

If \psi = 0\,, then \tilde{J} = J\,, the polar moment of inertia.

Summary of the solution approach

This article is issued from Wikiversity - version of the Monday, February 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.