Introduction to Elasticity/Stress example 3
< Introduction to ElasticityExample 3
Given:
A stress field whose components in the basis are given by the matrix
Find:
- Assuming negligible body forces, show whether this field satisfies equilibrium.
- Find the traction acting at a point P whose position vector is
acting on a plane
.
- Determine the normal traction at this point on the plane.
- Determine the projected shear traction at this point on the plane.
- Determine the principal stresses at point P.
- Determine the principal directions of stress at point P.
Solution
This problem is very similar to example 2.
The stress is a function of and
. We first plug the stress into the equilibrium equations (Cauchy's first law) and find that the sum is zero. Hence the stress satifies equilibrium.
Next, we find the stress at the given point byplugging in the values of and
into the given stress.
Then we find the normal to the given plane using the relation
and find the traction vector and thenormal and projected shear tractions.
We find the eigenvalues (principal stresses) by first forming the cubic characteristic equation and then solving for it. Then we plug the values of the principal stresses into the eigenfunction and solve for the direction of the principal strains.
Since the stress tensor is symmetric, we need an extra relation between ,
, and
to reduce the system down to two equations and two unknowns. This relation is
, which means that each eigenvector is a unit vector.
The Maple output is shown below.
> with(linalg):
> sigma :=
> linalg[matrix](3,3,[6*x1*x3^2,0,-2*x3^3,0,1,2,-2*x3^3,2,3*x1^2]);
[ 2 3]
[6 x1 x3 0 -2 x3 ]
[ ]
sigma := [ 0 1 2 ]
[ ]
[ 3 2 ]
[ -2 x3 2 3 x1 ]
> e1 := linalg[matrix](3,1,[1,0,0]):
> e2 := linalg[matrix](3,1,[0,1,0]):
> e3 := linalg[matrix](3,1,[0,0,1]):
> sigi1i := diff(sigma[1,1],x1)+diff(sigma[2,1],x2)+diff(sigma[3,1],x3);
sigi1i := 0
> sigi2i := diff(sigma[1,2],x1)+diff(sigma[2,2],x2)+diff(sigma[3,2],x3);
sigi2i := 0
> sigi3i := diff(sigma[1,3],x1)+diff(sigma[2,3],x2)+diff(sigma[3,3],x3);
sigi3i := 0
> X := evalm(2*e1 + 3*e2 + 2*e3):
> sig := linalg[matrix](3,3):
> for i from 1 to 3 do
> for j from 1 to 3 do
> sig[i,j] := eval(eval(eval(sigma[i,j], x1 = X[1,1]), x2 =X[2,1]), x3
> = X[3,1]);
> end do;
> end do;
> evalm(sig);
[ 48 0 -16]
[ ]
[ 0 1 2]
[ ]
[-16 2 12]
> a1 := 2: a2 := 1: a3 := -1: ajaj := sqrt(a1*a1 + a2*a2 + a3*a3):
> n := evalm(a1*e1/ajaj + a2*e2/ajaj + a3*e3/ajaj);
[ 1/2 ]
[ 6 ]
[ ---- ]
[ 3 ]
[ ]
[ 1/2 ]
n := [ 6 ]
[ ---- ]
[ 6 ]
[ ]
[ 1/2]
[ 6 ]
[- ----]
[ 6 ]
> sigT := transpose(sig):
> t := evalm(sigT&*n);
[ 1/2]
[56 6 ]
[-------]
[ 3 ]
[ ]
t := [ 1/2 ]
[ 6 ]
[- ---- ]
[ 6 ]
[ ]
[ 1/2]
[-7 6 ]
> tT := transpose(t):
> N := evalm(tT&*n): Nt := evalf(N[1,1]);
Nt := 44.16666667
> tdott := evalm(tT&*t):
> St := evalf(sqrt(tdott[1,1] - N[1,1]^2));
St := 20.83599984
> I1 := sig[1,1]+sig[2,2]+sig[3,3];
I1 := 61
> I2 := sig[1,1]*sig[2,2] + sig[2,2]*sig[3,3] + sig[3,3]*sig[1,1] -
> sig[1,2]*sig[2,1] - sig[2,3]*sig[3,2] - sig[3,1]*sig[1,3];
I2 := 376
> I3 := det(sig);
I3 := 128
> prinSig := solve(x^3 - I1*x^2 + I2*x - I3 = 0, x):
> s1 := evalf(prinSig[1]); s2 := evalf(prinSig[2]); s3 :=
> evalf(prinSig[3]);
-8
s1 := 54.09271724 - 0.2 10 I
-8
s2 := 0.361501126 - 0.8160254040 10 I
-8
s3 := 6.545781610 + 0.9160254040 10 I
> sig1 := 54.09271724; sig2 := 6.545781610; sig3 := .361501126;
sig1 := 54.09271724
sig2 := 6.545781610
sig3 := 0.361501126
> with(LinearAlgebra): Id := IdentityMatrix(3):
> Left1 := evalm(sig - sig1*Id):
> n3 := sqrt(1 - n1^2 - n2^2):
> n := linalg[matrix](3,1,[n1,n2,n3]):
> Ax1 := evalm(Left1 &* n):
> sols1 := solve({Ax1[1,1] = 0, Ax1[2,1] = 0});
sols1 := {n2 = 0.01340427809, n1 = -0.9344527487}
> N1_1 := sols1[2]; N1_2 := sols1[1]; N1_3 := sqrt(1 -
> (.1340427809e-1)^2 - (-.9344527487)^2);
>
N1_1 := n1 = -0.9344527487
N1_2 := n2 = 0.01340427809
N1_3 := 0.3558347730
> Left2 := evalm(sig - sig2*Id):
> Ax2 := evalm(Left2 &* n):
> sols2 := solve({Ax2[1,1] = 0, Ax2[2,1] = 0});
sols2 := {n1 = 0.3412802400, n2 = 0.3188798847}
> N2_1 := sols2[1]; N2_2 := sols1[2]; N2_3 := sqrt(1 - (.3412802400)^2 -
> (.3188798847)^2);
N2_1 := n1 = 0.3412802400
N2_2 := n1 = -0.9344527487
N2_3 := 0.8842191001
> Left3 := evalm(sig - sig3*Id):
> Ax3 := evalm(Left3 &* n):
> sols3 := solve({Ax3[1,1] = 0, Ax3[2,1] = 0});
sols3 := {n1 = 0.1016162335, n2 = -0.9477003447}
> N3_1 := sols3[1]; N3_2 := sols3[2]; N3_3 := sqrt(1 - (.1016162335)^2 -
> (-.9477003447)^2);
N3_1 := n1 = 0.1016162335
N3_2 := n2 = -0.9477003447
N3_3 := 0.3025528017