Introduction to Elasticity/Stress example 2

< Introduction to Elasticity

Example 2

Given: A homogeneous stress field with components in the basis (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)\, given by


\left[\boldsymbol{\sigma}\right] = 
\begin{bmatrix}
  3 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0
\end{bmatrix}
\text{(MPa)}

Find:

  1. The traction (\mathbf{t}\,) acting on a surface with unit normal \widehat{\mathbf{n}} = (\widehat{\mathbf{e}}_2+\widehat{\mathbf{e}}_3)/\sqrt{2}.
  2. The normal traction (\mathbf{t}_n\,) acting on a surface with unit normal \widehat{\mathbf{n}} = (\widehat{\mathbf{e}}_2+\widehat{\mathbf{e}}_3)/\sqrt{2}.
  3. The projected shear traction (\mathbf{t}_s) acting on a surface with unit normal \widehat{\mathbf{n}} = (\widehat{\mathbf{e}}_2+\widehat{\mathbf{e}}_3)/\sqrt{2}.
  4. The principal stresses.
  5. The principal directions of stress.

Solution

Here's how you can solve this problem using Maple.
with(linalg):

sigma := linalg[matrix](3,3,[3,1,1,1,0,2,1,2,0]);


\sigma  :=  \begin{bmatrix} 3 & 1 & 1 \\ 1 & 0 & 2 \\
                                      1 & 2 & 0 \end{bmatrix}


e2 := linalg[matrix](3,1,[0,1,0]);


\mathit{e2} :=  \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}


e3 := linalg[matrix](3,1,[0,0,1]);


\mathit{e3} :=  \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}


n := evalm((e2+e3)/sqrt(2));


n :=  \begin{bmatrix} 0 \\
{ \frac {\sqrt{2}}{2}}  \\ [2ex]
{ \frac {\sqrt{2}}{2}} 
\end{bmatrix}


sigmaT := transpose(sigma);


\mathit{sigmaT} :=  
\begin{bmatrix}
3 & 1 & 1 \\
1 & 0 & 2 \\
1 & 2 & 0
\end{bmatrix}


t := evalm(sigmaT&*n);


\mathbf{t} :=   
\begin{bmatrix}
\sqrt{2} \\
\sqrt{2} \\
\sqrt{2}
\end{bmatrix}
  ~~~~ \text{Solution for Part 1}


tT := transpose(t);


\mathit{tT} :=  \begin{bmatrix}
\sqrt{2} & \sqrt{2} & \sqrt{2}
\end{bmatrix}


N := evalm(tT&*n);


N :=  \begin{bmatrix}
2
\end{bmatrix}
  ~~~~ \text{Solution for Part 2}


tdott := evalm(tT&*t);


\mathit{tdott} :=  \begin{bmatrix}
6
\end{bmatrix}


S := sqrt(tdott[1,1] - N[1,1]^2);


S := \sqrt{2}
  ~~~~ \text{Solution for Part 3}


sigPrin := eigenvals(sigma);


\mathit{sigPrin} := 1, \,-2, \,4
  ~~~~ \text{Solution for Part 4}


dirPrin := eigenvects(sigma);


\mathit{dirPrin} := [1, \,1, \,\{[-1, \,1, \,1]\}], \,[-2, \,1, 
\,\{[0, \,-1, \,1]\}], \,[4, \,1, \,\{[2, \,1, \,1]\}]


dirPrin[1];


[1, \,1, \,\{[-1, \,1, \,1]\}]
  ~~~~ \text{Solution for Part 5}


dirPrin[2];


[-2, \,1, \,\{[0, \,-1, \,1]\}]
  ~~~~ \text{Solution for Part 5}


dirPrin[3];


[4, \,1, \,\{[2, \,1, \,1]\}]
  ~~~~ \text{Solution for Part 5}
This article is issued from Wikiversity - version of the Monday, February 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.