Introduction to Elasticity/Sample midterm3

< Introduction to Elasticity

Sample Homework Problem 3

For an isotropic material with E = 100 GPa and \nu = 0.25, find the stress tensor and strain energy density at a point in a body if the components of the strain tensor are given by


  \varepsilon_{ij} = \begin{bmatrix}
                       200 & 100 & 0 \\
                       100 & 200 & 100 \\
                       0 & 100 & 0 
                     \end{bmatrix} \times 10^{-6}~~.

Solution

The shear modulus (\mu) is given by


  \mu = \frac{E}{2(1+\nu)} = \frac{100}{2.5} = 40~\text{GPa} = 
       40\times 10^6 ~\text{KPa}

The Lamé modulus (\lambda) is given by


  \lambda = \frac{E\nu}{(1+\nu)(1-2\nu)} = \frac{25}{(1.25)(0.5)} = 
           40~\text{GPa}  = 40\times 10^6 ~\text{KPa}

The stress-strain relation for isotropic materials is

\begin{align}
  \sigma_{ij} & = 2\mu\varepsilon_{ij} + \lambda\varepsilon_{kk}\delta_{ij} \\
     & = 40(2\varepsilon_{ij} + \varepsilon_{kk}\delta_{ij}) 
\end{align}

Therefore, (after converting \mu and \lambda into KPa so that the 10^{-6} term in the strain cancels out),

\begin{align}
  \sigma_{11} & = 40(2\varepsilon_{11} + \varepsilon_{11} + \varepsilon_{22}
                     + \varepsilon_{33}) \\
              & = 40\left[(3)(200) + 200 + 0\right]  = (40)(800) = 32000 \\
  \sigma_{22} & = 40(2\varepsilon_{22} + \varepsilon_{11} + \varepsilon_{22}
                     + \varepsilon_{33}) \\
              & = 40\left[(3)(200) + 200 + 0\right]  = (40)(800) = 32000 \\
  \sigma_{33} & = 40(2\varepsilon_{33} + \varepsilon_{11} + \varepsilon_{22}
                     + \varepsilon_{33}) \\
              & = 40\left[(3)(0) + 200 + 200\right]  = (40)(400) = 16000 \\
  \sigma_{23} & = 40(2\varepsilon_{23})  = (40)(200) = 8000\\
  \sigma_{31} & = 40(2\varepsilon_{31})  = (40)(0) = 0\\
  \sigma_{12} & = 40(2\varepsilon_{12})  = (40)(200) = 8000
\end{align}

In 3\times3 matrix form (after converting into MPa from KPa)


  {
  \sigma_{ij} = \begin{bmatrix}
                32 & 8 & 0 \\
                8 & 32 & 8 \\
                0 & 8 & 16 
                \end{bmatrix} ~\text{MPa}
  }

The strain energy density is given by


   U(\boldsymbol{\varepsilon}) = \frac{1}{2} \sigma_{ij}\varepsilon_{ij}

Therefore,

\begin{align}
   U(\boldsymbol{\varepsilon}) & = \frac{1}{2}\left[
                \sigma_{11} \varepsilon_{11} + 
                \sigma_{22} \varepsilon_{22} + 
                \sigma_{33} \varepsilon_{33} + 
                2 \sigma_{23} \varepsilon_{23} + 
                2 \sigma_{31} \varepsilon_{31} + 
                2 \sigma_{12} \varepsilon_{12} 
                \right] \\
            & = \frac{1}{2}\left[(32)(200) + (32)(200) + (16)(0) + (2)(8)(100) +
                           (2)(0)(0) + (2)(8)(100)\right]~\text{Pa}\\
            & = \frac{1}{2}\left[6400 + 6400 + 1600 + 1600\right]~\text{Pa}\\
            & = 8000~\text{Pa} = 8 ~\text{KPa}
\end{align}

The strain energy density is


  { U = 8~\text{KPa}}
This article is issued from Wikiversity - version of the Tuesday, August 07, 2007. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.