Introduction to Elasticity/Sample midterm 2

< Introduction to Elasticity

Sample Midterm Problem 2

Given:

A strain gage rosette provides the following data


   \varepsilon_{1} = 0.01; ~~ \varepsilon_{2} = 0.02; ~~
   \varepsilon_{30^o} = 0

where the X_1 and X_2 directions are perpendicular to each other and \varepsilon_{30^o} is the extensional strain of a line element at an angle of 30^o to the X_1 axis (in the counterclockwise direction).

Find:

Solution

Part (a)

From the previous problem, for an angle of rotation of 30^o, the rotation matrix \left[L\right] is


     l_{ij} = \left[L\right] = \begin{bmatrix}
               \sqrt{3}/2 & 1/2 & 0 \\
               -1/2 & \sqrt{3}/2 & 0 \\
               0 & 0 & 1 
           \end{bmatrix}

Therefore, the components of strain in the rotated co-ordinate system are given by


    \left[\boldsymbol{\varepsilon}\right]^{'} = \left[L\right] \left[\boldsymbol{\varepsilon}\right] \left[L\right]^T  ~~\text{or,}~~ 
    \varepsilon^{'}_{ij} = l_{ip} l_{jq} \varepsilon_{pq}

Since we are given \varepsilon_{30^o} = \varepsilon^{'}_{11}, we will calculate the value of this strain in terms of the original components of strain. Thus,

\begin{align}
   \varepsilon^{'}_{11} = & l_{1p} l_{1q} \varepsilon_{pq} \\
   = & l_{11}l_{11}\varepsilon_{11} + l_{12}l_{11}\varepsilon_{21} + l_{13}l_{11}\varepsilon_{31} + 
       l_{11}l_{12}\varepsilon_{12} + l_{12}l_{12}\varepsilon_{22} + l_{13}l_{12}\varepsilon_{32} +\\
     & l_{11}l_{13}\varepsilon_{13} + l_{12}l_{13}\varepsilon_{23} + l_{13}l_{13}\varepsilon_{33} \\
   = & l_{11}(l_{11}\varepsilon_{11} + l_{12}\varepsilon_{12} + l_{13}\varepsilon_{13}) +
       l_{12}(l_{11}\varepsilon_{21} + l_{12}\varepsilon_{22} + l_{13}\varepsilon_{23}) + \\
     & l_{13}(l_{11}\varepsilon_{31} + l_{12}\varepsilon_{32} + l_{13}\varepsilon_{33}) \\
   = & (\frac{\sqrt{3}}{2})\left[(\frac{\sqrt{3}}{2})(0.01) + (\frac{1}{2})\varepsilon_{12}\right] +
       (\frac{1}{2})\left[(\frac{\sqrt{3}}{2})\varepsilon_{12} + (\frac{1}{2})(0.02)\right] \\
   = & (3/4)(0.01) + (\sqrt{3}/2)\varepsilon_{12} + (1/4)(0.02) \\
   = & (5/4)(0.01) + (\sqrt{3}/2)\varepsilon_{12}
  \end{align}

Therefore,


    (5/4)(0.01) + (\sqrt{3}/2)\varepsilon_{12}  = \varepsilon_{30^o} = 0

Hence,


    \varepsilon_{12} = -(2.5)(0.01)/\sqrt{3}

Next, for an angle of rotation of 60^o, the matrix \left[L\right] is

\begin{align}
    \left[L\right]   &= \begin{bmatrix}
               \cos(60^o) & \sin(60^o) & \cos(90^o) \\
               -\sin(60^o) & \cos(60^o) & \cos(90^o) \\
               \cos(90^o) & \cos(90^o) & \cos(0^o) 
             \end{bmatrix} \\
          &= \begin{bmatrix}
               1/2 & \sqrt{3}/2 & 0 \\
               -\sqrt{3}/2 & 1/2 & 0 \\
               0 & 0 & 1 
             \end{bmatrix} 
  \end{align}

Therefore, \varepsilon_{60^o} = \varepsilon^{'}_{11}, is given by

\begin{align}
   \varepsilon^{'}_{11} = & l_{1p} l_{1q} \varepsilon_{pq} \\
   = & l_{11}l_{11}\varepsilon_{11} + l_{12}l_{11}\varepsilon_{21} + l_{13}l_{11}\varepsilon_{31} + 
       l_{11}l_{12}\varepsilon_{12} + l_{12}l_{12}\varepsilon_{22} + l_{13}l_{12}\varepsilon_{32} +\\
     & l_{11}l_{13}\varepsilon_{13} + l_{12}l_{13}\varepsilon_{23} + l_{13}l_{13}\varepsilon_{33} \\
   = & l_{11}(l_{11}\varepsilon_{11} + l_{12}\varepsilon_{12} + l_{13}\varepsilon_{13}) +
       l_{12}(l_{11}\varepsilon_{21} + l_{12}\varepsilon_{22} + l_{13}\varepsilon_{23}) + \\
     & l_{13}(l_{11}\varepsilon_{31} + l_{12}\varepsilon_{32} + l_{13}\varepsilon_{33}) \\
   = & (\frac{1}{2})\left[(\frac{1}{2})(0.01) + (\frac{\sqrt{3}}{2})\varepsilon_{12}\right] +
       (\frac{\sqrt{3}}{2})\left[(\frac{1}{2})\varepsilon_{12} + (\frac{\sqrt{3}}{2})(0.02)\right] \\
   = & (1/4)(0.01) + (\sqrt{3}/2)\varepsilon_{12} + (3/4)(0.02) \\
   = & (7/4)(0.01) + (\sqrt{3}/2)(-(2.5)(0.01)/\sqrt{3} ) \\
   = & (7/4)(0.01) - (5/4)(0.01) = (1/2)(0.01) = 0.005 \\
  \end{align}

Therefore,


    {\varepsilon_{60^o} = 0.005}

Part (b)


    {\text{The result is valid for all materials.}}
This article is issued from Wikiversity - version of the Sunday, October 19, 2008. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.