Introduction to Elasticity/Sample midterm 1

< Introduction to Elasticity

Sample Midterm Problem 1

Given:

The vectors \mathbf{a}\,, \mathbf{b}\,, and \mathbf{c}\, are given, with respect to an orthonormal basis (\widehat{\mathbf{e}}_{1},\widehat{\mathbf{e}}_{2},\widehat{\mathbf{e}}_{3}), by


  \mathbf{a} = 5~\widehat{\mathbf{e}}_{1} - 3~\widehat{\mathbf{e}}_{2} + 10~\widehat{\mathbf{e}}{3}~;~~
  \mathbf{b} = 4~\widehat{\mathbf{e}}_{1} + 6~\widehat{\mathbf{e}}_{2} - 2~\widehat{\mathbf{e}}_{3}~;~~
  \mathbf{c}  = 10~\widehat{\mathbf{e}}_{1} + 6~\widehat{\mathbf{e}}_{2}

Find:

Solution

Part (a)


    d = [(5)(10) + (-3)(6) + (10)(0)](4) = 128

      {d = 128}

Part (b)


      \mathbf{D}  = a_i~c_j = \begin{bmatrix}
               (5)(10) & (5)(6) & (5)(0) \\
               (-3)(10) & (-3)(6) & (-3)(0) \\
               (10)(10) & (10)(6) & (10)(0) 
             \end{bmatrix}

      {\mathbf{D}    = \begin{bmatrix}
               50 & 30 & 0 \\
               -30 & -18 & 0 \\
               100 & 60 & 0 
             \end{bmatrix} }

      {\mathbf{D}~\text{is a second-order tensor}.}

Part (c)


      {\delta_{ij}  = \text{Kronecker delta}}

      {e_{ijk}  = \text{Permutation symbol}}

      {
         \delta_{ij} = \begin{cases}
                         1 & \rm{if}~ i=j \\
                         0 & \rm{otherwise} 
                       \end{cases}
       }

      {
         e_{ijk} = \begin{cases}
                          1 & \rm{if}~ ijk = 123,~231,~312 \\
                          -1 & \rm{if}~ ijk = 321,~213,~132 \\
                          0 & \rm{otherwise} 
                       \end{cases}
       }

Part (d)


       g = D_{kk} = D_{11} + D_{22} + D_{33} = 50 - 18 + 0 = 32 \,

      {g = 32}\,

Part (e)


       { \delta_{ik} e_{ikm} = e_{jjm} = 0}

Because jjm cannot be an even or odd permutation of 1,2,3.

Part (f)

The basis transformation rule for vectors is


       v_i^{'} = l_{ij} v_j

where


       l_{ij} = \widehat{\mathbf{e}}{i}^{'}\bullet\widehat{\mathbf{e}}{j} = \cos(\widehat{\mathbf{e}}{i}^{'},\widehat{\mathbf{e}}{j})

Therefore,

\begin{align}
      \left[L\right] &= \begin{bmatrix}
               \cos(30^o) & \cos(90^o-30^o) & \cos(90^o) \\
               \cos(90^o+30^o) & \cos(30^o) & \cos(90^o) \\
               \cos(90^o) & \cos(90^o) & \cos(0^o) 
             \end{bmatrix} \\
          &= \begin{bmatrix}
               \cos(30^o) & \sin(30^o) & \cos(90^o) \\
               -\sin(30^o) & \cos(30^o) & \cos(90^o) \\
               \cos(90^o) & \cos(90^o) & \cos(0^o) 
             \end{bmatrix} \\
          &= \begin{bmatrix}
               \sqrt{3}/2 & 1/2 & 0 \\
               -1/2 & \sqrt{3}/2 & 0 \\
               0 & 0 & 1 
             \end{bmatrix} 
    \end{align}

Hence,

\begin{align}
      b_1^{'} & = l_{11} b_1 + l_{12} b_2 + l_{13} b_3 = 
            (\sqrt{3}/2)(4) + (1/2)(6) + (0)(-2)  = 2\sqrt{3} + 3 = 6.46 \\
      b_2^{'} & = l_{21} b_1 + l_{22} b_2 + l_{23} b_3 = 
            (-1/2)(4) + (\sqrt{3}/2)(6) + (0)(-2)  = -2 + 3\sqrt{3} = 3.2\\
      b_3^{'} & = l_{31} b_1 + l_{32} b_2 + l_{33} b_3 = 
            (0)(4) + (0)(6) + (1)(-2)  = -2 
    \end{align}

Thus,


      {\mathbf{b}^{'} = 6.46~\mathbf{e}_1^{'}~ +~ 3.2~\mathbf{e}_2^{'}~ -~ 2\mathbf{e}_3^{'} }

Part (g)

The basis transformation rule for second-order tensors is


       D_{ij}^{'} = l_{ip} l_{jq} D_{pq} \,

Therefore,

\begin{align}
       D_{12}^{'} = &
        l_{11} l_{21} D_{11} + l_{12} l_{21} D_{21} + l_{13} l_{21} D_{31} + 
        l_{11} l_{22} D_{12} + l_{12} l_{22} D_{22} + l_{13} l_{22} D_{32} +\\
        & l_{11} l_{23} D_{13} + l_{12} l_{23} D_{23} + l_{13} l_{23} D_{33} \\
       = & l_{11} (l_{21} D_{11} + l_{22} D_{12} + l_{23} D_{13}) + 
           l_{12} (l_{21} D_{21} + l_{22} D_{22} + l_{23} D_{23}) +\\
        &  l_{13} (l_{21} D_{31} + l_{22} D_{32} + l_{23} D_{33}) \\
       = & (\frac{\sqrt{3}}{2})\left[(-\frac{1}{2})(50)+(\frac{\sqrt{3}}{2})(30)+(0)(0)\right] + 
           (\frac{1}{2})\left[(-\frac{1}{2})(-30)+(\frac{\sqrt{3}}{2})(-18)+(0)(0)\right] + \\
         &  (0)\left[(-\frac{1}{2})(100)+(\frac{\sqrt{3}}{2})(60)+(0)(0)\right]\\
       = & (\frac{\sqrt{3}}{2})\left[-25+ 15\sqrt{3}\right] + 
           (\frac{1}{2})\left[15 - 9\sqrt{3}\right]  \\
       = & -25\frac{\sqrt{3}}{2} + \frac{45}{2} + \frac{15}{2} - 9\frac{\sqrt{3}}{2}  \\
       = & -17\sqrt{3} + 30
    \end{align}

       {D_{12}^{'} = -17\sqrt{3} + 30 = 0.55}


This article is issued from Wikiversity - version of the Friday, January 04, 2008. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.