Introduction to Elasticity/Polynomial solutions

< Introduction to Elasticity

Using the Airy Stress Function : Polynomial Solutions

Given:


     \varphi = a~x_1^2 + b~x_1~x_2 + c~x_2^2

Find the problem which fits this solution.


     \sigma_{11} = \varphi_{,22} = 2c ~;~~                        
     \sigma_{22} = \varphi_{,11} = 2a ~;~~                        
     \sigma_{12} = -\varphi_{,12} = -b

This is a homogeneous stress field. An infinite number of problems can satisfy these conditions.

Given:


     \varphi = a~x_1^3 + b~x_1^2~x_2 + c~x_1~x_2^2 + d~x_2^3

Find the problem which fits this solution.


     \sigma_{11} = 2cx_1 + 6dx_2 ~;~~                        
     \sigma_{22} = 6ax_1 + 2bx_2 ~;~~                        
     \sigma_{12} = -2bx_1 - 2cx_2

An infinite set of problems can have this stress field as a solution.

If a = b = c= 0, then


     \sigma_{11} =  6dx_2 ~;~~ \sigma_{22} = 0 ~;~~                        
     \sigma_{12} = 0

which corresponds to a plane stress beam under pure bending.

Pure bending of an elastic beam

Consider a cantilevered beam that is fixed at one end and has a vertical force F applied at the free end.

Bending of a cantilevered beam

The boundary conditions on the beam are

\begin{matrix}
    \sigma_{12} & = 0 ~;~~ x_2 = \pm b \\
    \sigma_{22} & = 0 ~;~~ x_2 = \pm b \\
    \sigma_{11} & = 0 ~;~~ x_1 = 0 \\
    \int_{-b}^{b}\sigma_{12} dx_2 & = F ~;~~ x_1 = 0 \\
    \mathbf{u} & = \mathbf{0} ~;~~ x_1 = a
  \end{matrix}

We will use Maple to solve the problem.

First, assume a polynomial Airy stress function that has a high enough order. In this case a fourth order polynomial will suffice
phi:=C1*x^2+C2*x*y+C3*y^2+C4*x^3+C5*x^2*y+C6*x*y^2+ C7*y^3+C8*x^4+C9*x^3*y+C10*x^2*y^2+C11*x*y^3+C12*y^4;


\begin{align}
\phi &:= \mathit{C1}\,x^{2} + \mathit{C2}\,x\,y + \mathit{C3}\,y
^{2} + \mathit{C4}\,x^{3} + \mathit{C5}\,x^{2}\,y + \mathit{C6}\,
x\,y^{2} + \mathit{C7}\,y^{3} \\
& + \mathit{C8}\,x^{4} +\mathit{C9}\,x^{3}\,y + \mathit{C10}\,x^{2}\,y^{2} + \mathit{C11}\,x\,y^{3} + \mathit{C12}\,y^{4} 
\end{align}

Take the derivatives of the stress function to obtain the expressions for the stresses.
sxx1:= diff(phi,y,y); syy1:= diff(phi,x,x); sxy1:= -diff(phi,x,y);


\begin{align}
\mathit{sxx1} & := 2\,\mathit{C3} + 2\,\mathit{C6}\,x + 6\,\mathit{
C7}\,y + 2\,\mathit{C10}\,x^{2} + 6\,\mathit{C11}\,x\,y + 12\,
\mathit{C12}\,y^{2} \\
\mathit{syy1} & := 2\,\mathit{C1} + 6\,\mathit{C4}\,x + 2\,\mathit{
C5}\,y + 12\,\mathit{C8}\,x^{2} + 6\,\mathit{C9}\,x\,y + 2\,
\mathit{C10}\,y^{2} \\
\mathit{sxy1} & :=  - \mathit{C2} - 2\,\mathit{C5}\,x - 2\,\mathit{
C6}\,y - 3\,\mathit{C9}\,x^{2} - 4\,\mathit{C10}\,x\,y - 3\,
\mathit{C11}\,y^{2}
\end{align}

Next, use the command unapply(...,x,y) to configure the stresses as functions of x,y so that we can find the value at various points, e.g., y=b.
sxx2:=unapply(sxx1,x,y): syy2:=unapply(syy1,x,y): sxy2:=unapply(sxy1,x,y):

We now find the tractions on y=b as
t1:=syy2(x,b); t2:=sxy2(x,b);


\begin{align}
\mathit{t1} &:= 2\,\mathit{C1} + 6\,\mathit{C4}\,x + 2\,\mathit{C5
}\,b + 12\,\mathit{C8}\,x^{2} + 6\,\mathit{C9}\,x\,b + 2\,
\mathit{C10}\,b^{2}\\
\mathit{t2} &:=  - \mathit{C2} - 2\,\mathit{C5}\,x - 2\,\mathit{C6
}\,b - 3\,\mathit{C9}\,x^{2} - 4\,\mathit{C10}\,x\,b - 3\,
\mathit{C11}\,b^{2}
\end{align}

and on y=-b
t3:=syy2(x,-b); t4:=sxy2(x,-b);


\begin{align}
\mathit{t3} &:= 2\,\mathit{C1} + 6\,\mathit{C4}\,x - 2\,\mathit{C5
}\,b + 12\,\mathit{C8}\,x^{2} - 6\,\mathit{C9}\,x\,b + 2\,
\mathit{C10}\,b^{2}\\
\mathit{t4} &:=  - \mathit{C2} - 2\,\mathit{C5}\,x + 2\,\mathit{C6
}\,b - 3\,\mathit{C9}\,x^{2} + 4\,\mathit{C10}\,x\,b - 3\,
\mathit{C11}\,b^{2}
\end{align}

On x=0, we have
t5:=sxx2(0,y); t6:=sxy2(0,y);


\begin{align}
\mathit{t5} &:= 2\,\mathit{C3} + 6\,\mathit{C7}\,y + 12\,\mathit{C12}\,y^{2} \\
\mathit{t6} &:=  - \mathit{C2} - 2\,\mathit{C6}\,y - 3\,\mathit{C11}\,y^{2}
\end{align}

The stress function is order 4, so the stresses are order 2 in x and y. The tractions on y=+b or -b might therefore be polynomials in x of order 2.

We calculate the coefficients of each power of x in these expressions as
s1:=coeff(t1,x,2); s2:=coeff(t1,x,1); s3:=coeff(t1,x,0); s4:=coeff(t2,x,2); s5:=coeff(t2,x,1); s6:=coeff(t2,x,0); s7:=coeff(t3,x,2); s8:=coeff(t3,x,1); s9:=coeff(t3,x,0); s10:=coeff(t4,x,2); s11:=coeff(t4,x,1); s12:=coeff(t4,x,0);


\begin{align}
\mathit{s1} &:= 12\,\mathit{C8} \\
\mathit{s2} &:= 6\,\mathit{C4} + 6\,\mathit{C9}\,b \\
\mathit{s3} &:= 2\,\mathit{C1} + 2\,\mathit{C5}\,b + 2\,\mathit{
C10}\,b^{2} \\
\mathit{s4} &:=  - 3\,\mathit{C9} \\
\mathit{s5} &:=  - 2\,\mathit{C5} - 4\,\mathit{C10}\,b \\
\mathit{s6} &:=  - \mathit{C2} - 2\,\mathit{C6}\,b - 3\,\mathit{
C11}\,b^{2} \\
\mathit{s7} &:= 12\,\mathit{C8} \\
\mathit{s8} &:= 6\,\mathit{C4} - 6\,\mathit{C9}\,b \\
\mathit{s9} &:= 2\,\mathit{C1} - 2\,\mathit{C5}\,b + 2\,\mathit{
C10}\,b^{2} \\
\mathit{s10} &:=  - 3\,\mathit{C9} \\
\mathit{s11} &:=  - 2\,\mathit{C5} + 4\,\mathit{C10}\,b \\
\mathit{s12} &:=  - \mathit{C2} + 2\,\mathit{C6}\,b - 3\,\mathit{
C11}\,b^{2}
\end{align}

The biharmonic equation is 4th order, so applying it to a 4th order polynomial generates a constant. And this constant must be equal to zero.
biharm:=diff(phi,x$4)+diff(phi,y$4)+2*diff(phi,x,x,y,y);


\mathit{biharm} := 24\,\mathit{C8} + 24\,\mathit{C12} + 8\,\mathit{C10}

We also calculate the three force resultants on x=0 by integrating over y:
Fx:=int(t5, y=-b..b): Fy:=int(t6, y=-b..b): M:=int(t5*y, y=-b..b):

We now solve for the constants so as to satisfy (i) the strong boundary conditions, (ii) the biharmonic equation and (iii) the weak boundary conditions.
solution:=solve({s1=0,s2=0,s3=0,s4=0,s5=0,s6=0,s7=0, s8=0,s9=0,s10=0,s11=0,s12=0,biharm=0,Fx=0,M=0,Fy=F}, {C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12});


\begin{align}
\text{solution} & := \{ \mathit{C7}=0, \,\mathit{C8}=0, \,\mathit{C9}=0, \,\mathit{C4}=0, \,\mathit{C10}=0, 
\,\mathit{C5}=0, \\
& \mathit{C12}=0, \,\mathit{C1}=0, \,\mathit{C3}=0,  \,
\mathit{C6}=0, \,\mathit{C11}= \cfrac {F}{4\,b^{3}} , \,\mathit{C2}= - \cfrac {3\,F}{4\,b} \} 
\end{align}

Notice that there are more equations than there are constants. Some of the equations are not linearly independent. However, Maple can handle this if there is a solution.

Substitute the solution into the original stress function and calculate the final stresses.
phi:=subs(solution,phi); sxx3:=diff(phi,y,y); syy3:=diff(phi,x,x); sxy3:=-diff(phi,x,y);


\phi  :=  - { \cfrac {3\,F\,x\,y}{4\,b}}  + 
{ \cfrac {F\,x\,y^{3}}{4\,b^{3}}}

and


\begin{align}
\mathit{sxx3} & := { \cfrac {3\,F\,x\,y}{2\,b^{3}}} \\
\mathit{syy3} & := 0 \\
\mathit{sxy3} & := { \cfrac {3\,F}{4\,b}}  - 
{ \cfrac {3\,F\,y^{2}}{4\,b^{3}}} 
\end{align}
Stress distribution in an elastic cantilevered beam.

Displacement Boundary Condition

The displacement potential function must satisfy the relations \psi_{,12} = \nabla^2{\varphi} and \nabla^2{\psi} = 0.

In this problem,


   \varphi =  - \cfrac{3Fx_1x_2}{4b} + \cfrac{Fx_1x_2^{3}}{4b^{3}}

Therefore,


    \psi_{,12} = \cfrac{6Fx_1x_2}{4b^3}

Integrating,


    \psi = \cfrac{3F}{8}x_1^2x_2^2 + f(x_1) + g(x_2)

\nabla^2{\psi} = 0 only if


    \cfrac{3F}{4}(x_1^2 + x_2^2) + f^{''}(x_1) + g^{''}(x_2) = 0

which means that


    f^{''}(x_1) = -\cfrac{3F}{4}x_1^2 + G ~;~~
    g^{''}(x_2) = -\cfrac{3F}{4}x_2^2 - G ~;~~

These can be integrated to find f(x_1) and g(x_2) in terms of x_1, x_2 and constants. The constants can be determined from the displacement BCs applied so as to fix rigid body motion.

The displacements are given by

\begin{matrix}
    u_1 &= -\cfrac{P}{2EI}(a^2-x_1^2)x_2 -\cfrac{P(2+\nu)}{6EI}x_2^3
          +\cfrac{P(1+\nu)b^2}{8EI}x_2\\
    u_2 &= -\cfrac{Pa^3}{6EI}\left[2
           -\cfrac{3x_1}{a}\left(1-\cfrac{\nu x_2^2}{a^2}\right) 
           + \cfrac{x_1^3}{a^3} +
           \cfrac{3b^2(1+\nu)}{4a^2}\left(1-\cfrac{x_1}{a}\right)\right]
  \end{matrix}

where I = (1/12)wb^3 \,, and w = thickness of the beam.

  • Since u_1 is no a linear function of x_2, plane sections do not remain plane.
  • u_1(a,x_2) \ne 0 and u_2(a,x_2) \ne 0, but St. Venant's principle can be applied.
  • The deflection of the neutral axis (x_2 = 0) is
              
u_2(x_1,0) = -\cfrac{Pa^3}{6EI}\left[2 -\cfrac{3x_1}{a} + \cfrac{x_1^3}{a^3} +             \cfrac{3b^2(1+\nu)}{4a^2}\left(1-\cfrac{x_1}{a}\right)\right]
If b/a \rightarrow 0, this prediction approaches beam theory.
  • The maximum deflection is
 
 u_2(0,0) = -\cfrac{Pa^3}{3EI} -\cfrac{Pa^3}{6EI}\cfrac{3b^2(1+\nu)}{4a^2}

General Approach For Beam Problems

\begin{align}        \varphi = & C_1 x^5 + C_2 x^4 y + C_3 x^3 y^2 + C_4 x^2 y^3 + C_5 x y^4 +                 C_6 y^5 + \\        & C_7 x^4 + C_8 x^3 y + C_9 x^2 y^2 + C_{10} x y^3 + C_{11} y^4 +\\        & C_{12} x^3 + C_{13} x^2 y + C_{14} x y^2 + C_{15} y^3 + \\        & C_{16} x^2 + C_{17} x y + C_{18} y^2       \end{align}
This article is issued from Wikiversity - version of the Monday, February 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.