Introduction to Elasticity/Kinematics example 4

< Introduction to Elasticity

Example 4

Given:

Displacement field \mathbf{u} = \kappa X_2 \widehat{\mathbf{e}}_{1} + \kappa X_1 \widehat{\mathbf{e}}_{2}.

Find:

  1. The Lagrangian Green strain tensor \boldsymbol{E}\,.
  2. The infinitesimal strain tensor \boldsymbol{\varepsilon}\,.
  3. The infintesimal rotation tensor \boldsymbol{\omega}\,.
  4. The infinitesimal rotation vector \boldsymbol{\theta}\,.
  5. The exact longitudinal strain in the reference material direction \mathbf{e}_1\,.
  6. The approximate longitudinal strain in the direction \mathbf{e}_1\, based on the infinitesimal strain tensor \boldsymbol{\varepsilon}\,.

Solution

The Maple output of the computations are shown below:



  with(linalg): with(LinearAlgebra): 
  X := array(1..3): x := array(1..3):
  e1 := array(1..3,[1,0,0]): 
  e2 := array(1..3,[0,1,0]): 
  e3 := array(1..3,[0,0,1]):
  u := evalm(k*X[2]*e1 + k*X[1]*e2);

  u :=  \left[  \! k\,{X_{2}}, \,k\,{X_{1}}, \,0 \!  \right]



  x := evalm(u + X);

  x :=  \left[  \! k\,{X_{2}} + {X_{1}}, \,k\,{X_{1}} + {X_{2}}, \, {X_{3}} \!  \right]



  F := linalg[matrix](3,3):
  for i from 1 to 3 do
    for j from 1 to 3 do
      F[i,j] := diff(x[i],X[j]);
    end do;
  end do;
  evalm(F);

  F := \begin{bmatrix}
    1 & k & 0 \\
    k & 1 & 0 \\
    0 & 0 & 1
  \end{bmatrix}



  Id := IdentityMatrix(3): C := evalm(transpose(F)&*F); 
  E := evalm((1/2)*(C - Id));

  C :=  
   \begin{bmatrix}
    1 + k^{2} & 2\,k & 0 \\
    2\,k & 1 + k^{2} & 0 \\
    0 & 0 & 1
    \end{bmatrix}

  E := 
   \begin{bmatrix}
     { \frac {k^{2}}{2}}  & k & 0 \\ [2ex]
     k & { \frac {k^{2}}{2}}  & 0 \\ [2ex]
     0 & 0 & 0
   \end{bmatrix}



  gradu := linalg[matrix](3,3):
  for i from 1 to 3 do
    for j from 1 to 3 do
      gradu[i,j] := diff(u[i],X[j]);
    end do;
  end do;
  evalm(gradu);

  gradu :=  
     \begin{bmatrix}
        0 & k & 0 \\
        k & 0 & 0 \\
        0 & 0 & 0
     \end{bmatrix}



  epsilon := evalm((1/2)*(gradu + transpose(gradu)));

  \varepsilon  :=  
     \begin{bmatrix}
        0 & k & 0 \\
        k & 0 & 0 \\
        0 & 0 & 0
     \end{bmatrix}



  omega := evalm((1/2)*(gradu - transpose(gradu)));

  \omega  :=  
    \begin{bmatrix}
       0 & 0 & 0 \\
       0 & 0 & 0 \\
       0 & 0 & 0
    \end{bmatrix}



  stretch1 :=  sqrt(evalm(evalm(e1&*C)&*transpose(e1))[1,1]):
  longStrain1 := stretch1 - 1;

  \mathit{stretch1} := \sqrt{1 + k^{2}}

\mathit{longStrain1} := \sqrt{1 + k^{2}} - 1



  approxLongStrain1 := evalm(evalm(e1&*epsilon)&*transpose(e1))[1,1];

  \mathit{approxLongStrain1} := 0

The geometrical difference between the large strain and small strain cases can be observed by looking at the figures from the previous examples.

This article is issued from Wikiversity - version of the Monday, February 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.