Introduction to Elasticity/Kinematics example 3

< Introduction to Elasticity

Example 3

Given:

Unit square (X_1,X_2) \in [0,1] with displacement fields :

  1. \mathbf{u} = \kappa X_2 \widehat{\mathbf{e}}_{1} + \kappa X_1 \widehat{\mathbf{e}}_{2}.
  2. \mathbf{u} = -\kappa X_2 \widehat{\mathbf{e}}_{1} + \kappa X_1 \widehat{\mathbf{e}}_{2}.
  3. \mathbf{u} = \kappa X_1^2 \widehat{\mathbf{e}}_{2}.

Sketch: Deformed configuration in x_1,x_2 plane.

Solution

The displacement \mathbf{u} = \mathbf{x} - \mathbf{X}. Hence, \mathbf{x} = \mathbf{u} + \mathbf{X}. In the reference configuration, \mathbf{u} = 0 and \mathbf{x} = \mathbf{X}. Hence, in the (x_1, x_2) plane, the initial square is the same shape as the unit square in the (X_1, X_2) plane. We can use Maple to find out the values of x_1 and x_2 after the deformation \mathbf{u}.



  with(linalg):</code>
  X := array(1..3): x := array(1..3): u = array(1..3):
  e1 := array(1..3,[1,0,0]): 
  e2 := array(1..3,[0,1,0]): e3 = array(1..3,[0,0,1]):
  ua := evalm(k*X[2]*e1 + k*X[1]*e2):
  ub := evalm(-k*X[2]*e1 + k*X[1]*e2);
  uc := evalm(k*X[1]^2*e2);

  \mathit{ua} :=  \left[   k{X_{2}}, k{X_{1}}, 0  \right]

  \mathit{ub} :=  \left[    - k{X_{2}}, k{X_{1}}, 0   \right]

  \mathit{uc} :=  \left[   0, k{X_{1}}^{2}, 0   \right]



  xa := evalm(ua + X);
  xb := evalm(ub + X);
  xc := evalm(uc + X);</code>

  \mathit{xa} :=  \left[   k{X_{2}} + {X_{1}}, k{X_{1}} + {X_{2}}, {X_{3}}   \right]

  \mathit{xb} :=  \left[    - k{X_{2}} + {X_{1}}, k{X_{1}} + {X_{2}}, {X_{3}}   \right]

  \mathit{xc} :=  \left[   {X_{1}}, k{X_{1}}^{2} + {X_{2}}, {X_{3}}   \right]

Plots of the deformed body are shown below

Deformed shapes
This article is issued from Wikiversity - version of the Monday, February 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.