Introduction to Elasticity/Kinematics example 2

< Introduction to Elasticity

Example 2

Given: A body occupies the unit cube X_i \in [0,1] in the reference configuration. The mapping between the current and the reference configuration given by x_1 = X_1 + \kappa~X_2, x_2 = X_2\,, x_3 = X_3\,.

Find:

  1. Sketch current configuration.
  2. Show that motion is isochoric.
  3. Find stretches in the directions \widehat{\mathbf{e}}_{1}, \widehat{\mathbf{e}}_{2}, (1/\sqrt{2})(\widehat{\mathbf{e}}_{1}+\widehat{\mathbf{e}}_{2}), and (1/\sqrt{2})(\widehat{\mathbf{e}}_{1}-\widehat{\mathbf{e}}_{2}).
  4. Find the orthogonal shear strain between the reference material directions \widehat{\mathbf{e}}_{1} and \widehat{\mathbf{e}}_{2}. Also between directions (1/\sqrt{2})(\widehat{\mathbf{e}}_{1}+\widehat{\mathbf{e}}_{2}) and (1/\sqrt{2})(\widehat{\mathbf{e}}_{1}-\widehat{\mathbf{e}}_{2}).
  5. Find principal stretches and principal directions of stretch (\kappa = 0.4\,).

Solution:

Deformed shape.

  \lambda(\widehat{\mathbf{G}}) = \sqrt{\widehat{\mathbf{G}} : \boldsymbol{C} : \widehat{\mathbf{G}}}

where \boldsymbol{C}\, is the Cauchy-Green deformation tensor


  \boldsymbol{C} = \boldsymbol{F}^T \bullet \boldsymbol{F}

We will use Maple to calculate the stretches in the four directions.



      with(linalg):
      x := array(1..3): X := array(1..3): 
      x[1] := X[1] + k*X[2]: x[2] := X[2]: x[3] := X[3]:
      F := linalg[matrix](3,3):
      for i from 1 to 3 do
        for j from 1 to 3 do
          F[i,j] := diff(x[i],X[j]); 
        end do;
      end do;
      evalm(F);
      C := evalm(transpose(F)&*F);
      e1 := linalg[matrix](1,3,[1,0,0]): 
      e2 := linalg[matrix](1,3,[0,1,0]):
      e1pe2 := evalm((e1 + e2)/sqrt(2)): 
      e1me2 := evalm((e1-e2)/sqrt(2)):''
      lambda[1] := sqrt(evalm(evalm(e1&*C)&*transpose(e1))[1,1]);
      lambda[2] := sqrt(evalm(evalm(e2&*C)&*transpose(e2))[1,1]);
      lambda[3] := 
         simplify(sqrt(evalm(evalm(e1pe2&*C)&*transpose(e1pe2))[1,1]));
      lambda[4] :=
         simplify(sqrt(evalm(evalm(e1me2&*C)&*transpose(e1me2))[1,1]));



     F := 
     \begin{bmatrix} 1 & k & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}

     C := 
     \begin{bmatrix} 1 & k & 0 \\ k & k^{2} + 1 & 0 \\ 0 & 0 & 1
       \end{bmatrix}
 \lambda_{1} := 1 \,
 \lambda_{2} := \sqrt{k^{2} + 1}
 \lambda_{3} := \frac{\sqrt{4 + 4k + 2k^2}}{2}
 \lambda_{4} := \frac{\sqrt{4 - 4k + 2k^2}}{2}

The following figure shows that the calculated stretches are correct.

Stretches

       \gamma(\widehat{\mathbf{G}}_{1},\widehat{\mathbf{G}}_{2}) = \sin^{-1}\left(\frac{\widehat{\mathbf{G}}_{1}:\mathbf{C}:\widehat{\mathbf{G}}_{2}}         {\lambda(\widehat{\mathbf{G}}_{1})\lambda(\widehat{\mathbf{G}}_{2})}\right)

Once again, we will use Maple to calculate these strains. The steps are the same upto the calculation of the stretches.



      numer1 := evalm(evalm(e1&*C)&*transpose(e2))[1,1]:
      denom1 := lambda[1]*lambda[2]:
      ratio1 := numer1/denom1:
      gam1 := arcsin(ratio1);
      numer2 := simplify(evalm(evalm(e1pe2&*C)&*transpose(e1me2))[1,1]):
      denom2 := lambda[3]*lambda[4]:
      ratio2 := numer2/denom2:
      gam2 := arcsin(ratio2);



      \gamma_1 := \sin^{-1}(\frac {k}{\sqrt{k^2 + 1}})

      \gamma_2 :=  - \sin^{-1}(\frac{2k^2}{\sqrt{4+4k+2k^2}\sqrt{4-4k+2k^2}})

The following figure shows that the calculated orthogonal shear strains are correct.

Orthogonal shear strains

The value of \gamma_{1}\, can easily be verified using the definition of \sin{\gamma}\,. For the verification of the value of \gamma_{2}\,, the cosine law


       \cos(A) = \frac{b^2+c^2-a^2}{2bc}\,

has to be used. Note that the actual length of the sides b\, and c\, of the triangle is obtained after multiplying the values shown in the figure by the length of the diagonal (\sqrt{2}). Hence, the calculated values are correct.



      b := sqrt(2)/2*lambda[4]:
      c := sqrt(2)/2*lambda[3]:
      a := 1:
      A := (b^2 + c^2 - a^2)/(2*b*c);
  



      A := \frac{2k^2}{\sqrt{4+4k+2k^2}\sqrt{4-4k+2k^2}}

Once again, we use Maple for our calculations.



      CC := linalg[matrix](3,3):
      for i from 1 to 3 do
        for j from 1 to 3 do
          CC[i,j] := eval(C[i,j], k=0.4);
        end do;
      end do;
      evalm(CC);
      eigvals := eigenvals(CC);
      PrinStretch[1] := sqrt(eigvals[1]);
      PrinStretch[2] := sqrt(eigvals[2]);
      PrinStretch[3] := sqrt(eigvals[3]);
      PrinDir := eigenvects(CC);



     CC :=\begin{bmatrix} 1 & 0.4 & 0 \\ 0.4 & 1.16 & 0 \\ 0 & 0 & 1
          \end{bmatrix}

    \text{eigvals} := 0.67, 1.0, 1.49

   \text{PrinStretch}[1] := 0.82 ~,~~
   \text{PrinStretch}[2] := 1.0 ~,~~
   \text{PrinStretch}[3] := 1.22

   \text{PrinDir}[1] := [0.77, -0.63, 0.] ~;~~
   \text{PrinDir}[2] := [0, 0, 1] ~;~~
   \text{PrinDir}[3] := [0.63, 0.77, 0.]
This article is issued from Wikiversity - version of the Monday, February 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.