Introduction to Elasticity/Flamant solution

< Introduction to Elasticity

The Flamant Solution

Elastic wedge loaded by two forces at the tip

From Michell's solution, pick terms containing 1/r in the stresses. Then,


\varphi = C_1 r \theta\sin\theta + C_2 r\ln r \cos\theta + 
C_3 r \theta\cos\theta + C_4 r\ln r \sin\theta

Therefore, from Tables,

\begin{align}
\sigma_{rr} & = C_1\left(\frac{2\cos\theta}{r}\right) + 
C_2\left(\frac{\cos\theta}{r}\right) + 
C_3\left(\frac{2\sin\theta}{r}\right) + 
C_4\left(\frac{\sin\theta}{r}\right) \\
\sigma_{r\theta} & = C_2\left(\frac{\sin\theta}{r}\right) + 
C_4\left(\frac{-\cos\theta}{r}\right) \\
\sigma_{\theta\theta} & = C_2\left(\frac{\cos\theta}{r}\right) + 
C_4\left(\frac{\sin\theta}{r}\right) 
\end{align}

From traction BCs, C_2 = C_4 = 0. From equilibrium,

\begin{align}
F_1 + 2\int_{\alpha}^{\beta} 
\left(\frac{C_1\cos\theta - C_3\sin\theta}{a}\right)a\cos\theta d\theta 
& = 0 \\
F_2 + 2\int_{\alpha}^{\beta} 
\left(\frac{C_1\cos\theta - C_3\sin\theta}{a}\right)a\sin\theta d\theta 
& = 0 
\end{align}

After algebra,


\sigma_{rr} = \frac{2C_1\cos\theta}{r} + \frac{2C_3\sin\theta}{r} ~;~~
\sigma_{r\theta} = 0 ~;~~ \sigma{\theta\theta} = 0

Special Case : \alpha = -\pi, \beta = 0


C_1 = - \frac{F_1}{\pi} ~;~~ C_2 = \frac{F_2}{\pi}

The displacements are

\begin{align}
u_1 & = - \frac{F_1(\kappa+1)\ln|x_1|}{4\pi\mu} +
\frac{F_2(\kappa+1)\text{sign}(x_1)}{8\mu} \\
u_2 & = - \frac{F_2(\kappa+1)\ln|x_1|}{4\pi\mu} -
\frac{F_1(\kappa+1)\text{sign}(x_1)}{8\mu} 
\end{align}

where

\begin{align}
\kappa = 3 - 4\nu & & \text{plane strain} \\
\kappa = \frac{3 - \nu}{1+\nu} & & \text{plane stress} \\
\end{align}

and


\text{sign}(x) = \begin{cases} 
 +1 & x > 0 \\
 -1 & x < 0 
 \end{cases}
This article is issued from Wikiversity - version of the Monday, February 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.