Introduction to Elasticity/Equilibrium example 3

< Introduction to Elasticity

Example 3

Given:

If a material is incompressible (\nu = 0.5), a state of hydrostatic stress (\sigma_{11} = \sigma_{22} = \sigma_{33}) produces no strain. The corresponding stress-strain relation can be written as

 \sigma_{ij} = 2\mu\varepsilon_{ij} - p\delta_{ij}

where p is an unknown hydrostatic pressure which will generally vary with position. Also, the condition of incompressibility requires that the dilatation

 e = \varepsilon_{kk} = 0~.

Show:

Show that the stress components and the hydrostatic pressure p must satisfy the equations


\nabla^2{p}  = \boldsymbol{\nabla}\bullet{\mathbf{b}} ~;~~ \sigma_{11} + \sigma_{22}  = -2p

where \mathbf{b} is the body force.

Solution

We have,  e = \varepsilon_{kk} = \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33} = 0~.\, Also,


  \sigma_{11} = 2\mu\varepsilon_{11} - p ~;~~
  \sigma_{22} = 2\mu\varepsilon_{22} - p ~;~~
  \sigma_{33} = 2\mu\varepsilon_{33} - p ~.\,

Therefore,

\begin{align}
  \sigma_{11} + \sigma_{22} + \sigma_{33} & = 
     2\mu\left(\varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}\right) - 3p\\
     & = -3p 
\end{align}

Since \sigma_{11} = \sigma_{22} = \sigma_{33}\,, the above relation gives  \sigma_{11} = \sigma_{22} = \sigma_{33} = -p \,. Therefore,


  \sigma_{11} + \sigma_{22} = -2p \,

The strain-stress relations are


  2\mu\varepsilon_{11} = \sigma_{11} + p ~;~~
  2\mu\varepsilon_{22} = \sigma_{22} + p ~;~~
  2\mu\varepsilon_{12} = \sigma_{12} ~.

Differentiating the strains so that they correspond to the compatibilityrelation is two-dimensions, we have


  \varepsilon_{11,22} = \frac{1}{2\mu}\left(\sigma_{11,22} + p_{,22}\right) ~;~~
  \varepsilon_{22,11} = \frac{1}{2\mu}\left(\sigma_{22,11} + p_{,11}\right) ~;~~
  \varepsilon_{12,12} = \frac{1}{2\mu}\left(\sigma_{12,12} \right) ~.

In terms of the compatibility equation,

\begin{align}
  & \varepsilon_{11,22} + \varepsilon_{22,11} - 2\varepsilon_{12,12} 
     = \frac{1}{2\mu}
      \left(\sigma_{11,22} + \sigma_{22,11} - 2\sigma_{12,12} + 
            p_{,11} + p_{,22}\right) \\
  \text{or,}~ & 0  = \sigma_{11,22} + \sigma_{22,11} - 
     2\sigma_{12,12} + \nabla^2{p}
\end{align}

From the two-dimensional equilibrium equations,


   \sigma_{11,1} + \sigma_{12,2} + b_1 = 0 ~;~~
   \sigma_{12,1} + \sigma_{22,2} + b_2 = 0

Therefore, differentiating w.r.t x_1 and x_2 respectively,


   \sigma_{11,11} + \sigma_{12,21} + b_{1,1} = 0 ~;~~
   \sigma_{12,12} + \sigma_{22,22} + b_{2,2} = 0

Adding,


   2\sigma_{12,12} + \sigma_{11,11} + \sigma_{22,22} + b_{1,1} + b_{2,2} = 0

Hence,


  \sigma_{11,11} + \sigma_{22,22} + b_{1,1} + b_{2,2} = - 2\sigma_{12,12}

Substituting back into the compatibility equation,

\begin{align}
  & \sigma_{11,22} + \sigma_{22,11} + 
  \sigma_{11,11} + \sigma_{22,22} + b_{1,1} + b_{2,2} + \nabla^2{p}  
    = 0 \\
  \text{or,} ~ &  \nabla^2{\sigma_{11}}+\nabla^2{\sigma_{22}}+\nabla^2{p} + \boldsymbol{\nabla}\bullet{\mathbf{b}}  = 0\\
  \text{or,} ~ &  \nabla^2{(\sigma_{11}+\sigma_{22}+p)} + \boldsymbol{\nabla}\bullet{\mathbf{b}}  = 0 \\
  \text{or,} ~ &  \nabla^2{(-2p+p)} + \boldsymbol{\nabla}\bullet{\mathbf{b}}  = 0 \\
  \text{or,} ~ &  -\nabla^2{p} + \boldsymbol{\nabla}\bullet{\mathbf{b}}  = 0 
\end{align}

Hence,


   { \nabla^2{p} = \boldsymbol{\nabla}\bullet{\mathbf{b}}}
This article is issued from Wikiversity - version of the Monday, February 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.