Introduction to Elasticity/Equilibrium example 2

< Introduction to Elasticity

Example 2

Given: The displacement equation of equilibrium for an isotropic inhomogeneous linear elastic material can be written as


          \boldsymbol{\nabla} \bullet (\mathbf{C} : \boldsymbol{\nabla} \mathbf{u}) + \mathbf{b} = 0

where


           \mathbf{C} = \lambda \mathbf{1}^{(2)}\otimes\mathbf{1}^{(2)} +
                 2\mu\mathbf{1}^{(4s)}

and \lambda(\mathbf{x}) and \mu(\mathbf{x}) are the Lamé moduli.

Show:

Show that the displacement equation of equilibrium can be expressed as


          \mu \boldsymbol{\nabla}\bullet(\boldsymbol{\nabla}\mathbf{u}) + 
          (\lambda+\mu) \boldsymbol{\nabla}(\boldsymbol{\nabla}\bullet\mathbf{u}) + 
          (\boldsymbol{\nabla}\mathbf{u}+\boldsymbol{\nabla}\mathbf{u}^T) \boldsymbol{\nabla}{\mu} + 
          (\boldsymbol{\nabla}\bullet\mathbf{u}) \boldsymbol{\nabla}{\lambda} + \mathbf{b} = 0

Solution

The skew part of the tensor \boldsymbol{\nabla}\mathbf{u} does not affect the stress because it leads to a rigid displacement field. Therefore, the displacement equation of equilibrium may be written as


   \boldsymbol{\nabla} \bullet \left[\mathbf{C} : \text{symm}(\boldsymbol{\nabla}\mathbf{u})\right] + \mathbf{b} = 0

where


   \text{symm}(\boldsymbol{\nabla}\mathbf{u}) = \frac{1}{2}(\boldsymbol{\nabla}\mathbf{u} + \boldsymbol{\nabla}\mathbf{u}^T)

In index notataion,


   \text{symm}(\boldsymbol{\nabla}\mathbf{u}) = \boldsymbol{\varepsilon} \equiv \varepsilon_{kl} = \frac{1}{2}(u_{k,l} + u_{l,k})

and


   \mathbf{C} \equiv C_{ijkl} = \lambda\delta_{ij}\delta_{kl} +
       \mu(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk})

Therefore,

\begin{align}
   \mathbf{C} : \text{symm}(\boldsymbol{\nabla}\mathbf{u}) \equiv 
     C_{ijkl}~\varepsilon_{kl} & = \lambda\delta_{ij}\delta_{kl}~\varepsilon_{kl} +
       \mu\delta_{ik}\delta_{jl}~\varepsilon_{kl} + \mu\delta_{il}\delta_{jk}~\varepsilon_{kl} \\
       & = \lambda~\varepsilon_{mm}\delta_{ij} + \mu~\varepsilon_{ij} + \mu~\varepsilon_{ij} \\
       & = \lambda~\varepsilon_{mm}\delta_{ij} + 2\mu~\varepsilon_{ij} \\
       & \equiv \lambda~(\text{tr}~\boldsymbol{\varepsilon})\mathbf{1} + 2\mu~\boldsymbol{\varepsilon} 
\end{align}

Now,


   \text{tr}~\boldsymbol{\varepsilon} \equiv 
   \varepsilon_{mm} = \frac{1}{2}(u_{m,m} + u_{m,m})  = u_{m,m} \equiv \boldsymbol{\nabla}\bullet\mathbf{u}

Hence,


   \mathbf{C} : \text{symm}(\boldsymbol{\nabla}\mathbf{u}) =
       \lambda~(\boldsymbol{\nabla}\bullet\mathbf{u})\mathbf{1} + \mu~(\boldsymbol{\nabla}\mathbf{u} + \boldsymbol{\nabla}\mathbf{u}^T)

Taking the divergence,

\begin{align}
  \boldsymbol{\nabla}\bullet{\left[\mathbf{C} : \text{symm}(\boldsymbol{\nabla}\mathbf{u})\right]} & =
       \boldsymbol{\nabla}\bullet{\left[\lambda~(\boldsymbol{\nabla}\bullet\mathbf{u})\mathbf{1} + \mu~(\boldsymbol{\nabla}\mathbf{u} + \boldsymbol{\nabla}\mathbf{u}^T)\right]} \\
       & = \boldsymbol{\nabla}\bullet{\left[\lambda~(\boldsymbol{\nabla}
\bullet\mathbf{u})\mathbf{1}\right]} + 
           \boldsymbol{\nabla}\bullet{\left(\mu~\boldsymbol{\nabla}\mathbf{u}\right)} + 
           \boldsymbol{\nabla}\bullet{\left(\mu~\boldsymbol{\nabla}\mathbf{u}^T\right)}
\end{align}

Recall that

\begin{align}
  \boldsymbol{\nabla}{\phi} & = \phi_{,j} \\
  \boldsymbol{\nabla}{\mathbf{v}} & =  v_{i,j} \\
  \boldsymbol{\nabla}\bullet{\mathbf{v}} & = v_{j,j} \\
  \boldsymbol{\nabla}\bullet{\mathbf{T}} & = T_{ij,j}
\end{align}

Therefore,

\begin{align}
   \boldsymbol{\nabla}\bullet{\left[\lambda~(\boldsymbol{\nabla}
\bullet\mathbf{u})\mathbf{1}\right]} & 
       \equiv \left(\lambda~u_{k,k}\delta_{ij}\right)_{,j} \\
     & = \lambda_{,i}~u_{k,k} + \lambda~u_{k,ki} \\
     & \equiv \boldsymbol{\nabla}{\lambda}(\boldsymbol{\nabla}\bullet\mathbf{u}) + \lambda\boldsymbol{\nabla}{(\boldsymbol{\nabla}\bullet\mathbf{u})}
\end{align}
\begin{align}
  \boldsymbol{\nabla}\bullet{\left(\mu~\boldsymbol{\nabla}\mathbf{u}\right)} & \equiv \left(\mu~u_{i,j}\right)_{,j} \\
     & = \mu_{,j}~u_{i,j} + \mu~u_{i,jj} \\
     & \equiv \boldsymbol{\nabla}{\mu} \boldsymbol{\nabla}\mathbf{u} + \mu\boldsymbol{\nabla}\bullet{(\boldsymbol{\nabla}\mathbf{u})}
\end{align}
\begin{align}
  \boldsymbol{\nabla}\bullet{\left(\mu~\boldsymbol{\nabla}\mathbf{u}^{T}\right)} & \equiv \left(\mu~u_{j,i}\right)_{,j} \\
     & = \mu_{,j}~u_{j,i} + \mu~u_{j,ij} \\
     & \equiv \boldsymbol{\nabla}{\mu} \boldsymbol{\nabla}\mathbf{u}^{T} + \mu\boldsymbol{\nabla}{(\boldsymbol{\nabla}\bullet\mathbf{u})}
\end{align}

Hence,

\begin{align}
  \boldsymbol{\nabla}\bullet{\left[\mathbf{C} : \text{symm}(\boldsymbol{\nabla}\mathbf{u})\right]} 
       & = \boldsymbol{\nabla}{\lambda}(\boldsymbol{\nabla}
\bullet\mathbf{u}) + \lambda\boldsymbol{\nabla}{(\boldsymbol{\nabla}\bullet\mathbf{u})} +
           \boldsymbol{\nabla}{\mu} \boldsymbol{\nabla}\mathbf{u} + \mu\boldsymbol{\nabla}\bullet{(\boldsymbol{\nabla}\mathbf{u})} +
           \boldsymbol{\nabla}{\mu} \boldsymbol{\nabla}\mathbf{u}^{T} + \mu\boldsymbol{\nabla}{(\boldsymbol{\nabla}\bullet\mathbf{u})} \\
       & = \mu\boldsymbol{\nabla}\bullet{(\boldsymbol{\nabla}\mathbf{u})} + (\lambda+\mu)\boldsymbol{\nabla}{(\boldsymbol{\nabla}\bullet\mathbf{u})} +
           \boldsymbol{\nabla}{\mu}\left(\boldsymbol{\nabla}\mathbf{u} + \boldsymbol{\nabla}\mathbf{u}^{T}\right) + 
           \boldsymbol{\nabla}{\lambda}(\boldsymbol{\nabla}\bullet \mathbf{u})
\end{align}

Therefore, the displacement equation of equilibrium can be expressed as required, i.e,


          \mu \boldsymbol{\nabla}\bullet(\boldsymbol{\nabla}\mathbf{u}) + 
          (\lambda+\mu) \boldsymbol{\nabla}(\boldsymbol{\nabla}\bullet\mathbf{u}) + 
          (\boldsymbol{\nabla}\mathbf{u}+\boldsymbol{\nabla}\mathbf{u}^T) \boldsymbol{\nabla}{\mu} + 
          (\boldsymbol{\nabla}\bullet\mathbf{u}) \boldsymbol{\nabla}{\lambda} + \mathbf{b} = 0
This article is issued from Wikiversity - version of the Saturday, February 13, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.