Introduction to Elasticity/Equilibrium example 1

< Introduction to Elasticity

Example 1

Given:

Euler's second law for the conservation of angular momentum

 \text{(1)} \qquad 
  \int_{\partial B} e_{ijk}~x_j~n_l~\sigma_{lk}~dS +
  \int_B \rho~e_{ijk}~x_j~b_k~dV  = 
  \frac{d}{dt}\left(\int_B \rho~e_{ijk}~x_j~v_k~dV \right)

The divergence theorem

 \text{(2)} \qquad 
  \int_{\partial B} n_i~\sigma_{ij}~dS = 
  \int_B \frac{\partial \sigma_{ij}}{\partial x_i}~dV

The equilibrium equation (Cauchy's first law)

 \text{(3)} \qquad 
  \frac{\partial \sigma_{ij}}{\partial x_i} + 
  \rho~b_j = 
  \frac{d}{dt}\left(\rho~v_j\right)

Show:

 \text{(4)} \qquad 
  \sigma_{ij} = \sigma_{ji}

Solution

Let us first look at the first term of equation~(1) and apply the divergence theorem (2). Thus,

\begin{align}
  \int_{\partial B} e_{ijk}~x_j~n_l~\sigma_{lk}~dS 
  & = \int_{\partial B} n_l~(e_{ijk}~x_j~\sigma_{lk})~dS  \\
  & = \int_{B} \frac{\partial{(e_{ijk}~x_j~\sigma_{lk})}}{\partial x_l}~dV  \\
  & = \int_{B} \left(e_{ijk}~\frac{\partial x_j}{\partial x_l}~\sigma_{lk} +
               e_{ijk}~x_j~\frac{\partial\sigma_{lk}}{\partial x_l}\right)~dV\\
  & = \int_{B} \left(e_{ijk}~\delta_{jl}~\sigma_{lk} +
               e_{ijk}~x_j\frac{\partial\sigma_{lk}}{\partial x_l}\right)~dV\\
  & = \int_{B} \left(e_{ilk}~\sigma_{lk} +
               e_{ijk}~x_j\frac{\partial\sigma_{lk}}{\partial x_l}\right)~dV
\end{align}

Plugging this back into equation~(1) gives


\int_{B} \left(e_{ilk}~\sigma_{lk} +
  e_{ijk}~x_j\frac{\partial\sigma_{lk}}{\partial x_l}\right)~dV
   + \int_B \rho~e_{ijk}~x_j~b_k~dV  = 
  \frac{d}{dt}\left(\int_B \rho~e_{ijk}~x_j~v_k~dV \right)

Therefore, bringing all terms to the left hand side,

\text{(5)} \qquad 
\int_{B} \left[e_{ilk}~\sigma_{lk} +
  e_{ijk}~x_j\left(\frac{\partial\sigma_{lk}}{\partial x_l}
   + \rho~b_k  - \frac{d}{dt}\left(\rho~v_k\right)\right)\right]~dV = 0

Using the equilibrium equations~(3), equation~(5) reduces to

\text{(6)} \qquad 
\int_{B} e_{ilk}~\sigma_{lk}~dV = 0

Since this holds for any B, we have

\text{(7)} \qquad 
e_{ilk}~\sigma_{lk} = 0

If you work this expression out, you will see that \sigma_{ij} = \sigma_{ji}. Hence, the stress tensor is symmetric.

This article is issued from Wikiversity - version of the Monday, February 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.