Introduction to Elasticity/Energy methods example 4

< Introduction to Elasticity

Example 4 : Bending of a cantilevered beam

Bending of a cantilevered beam

Application of the Principle of Virtual Work

The virtual work done by the external applied forces in moving through the virtual displacement \delta w(x)\, is given by


  \delta W_{\text{ext}} = \int_0^L q~\delta w~dx + P~\delta w(L)

The work done by the internal forces are,

\begin{align}
  \delta W_{\text{int}} & = \int_{\mathcal R} \delta U~dV \\
    & = \int_0^L\int_{\mathcal S}\delta\left(\frac{1}{2}\sigma_{ij}\varepsilon_{ij}\right)~dA~dx\\
    & = \int_0^L\int_{\mathcal S}\sigma_{ij} \delta\varepsilon_{ij}~dA~dx
\end{align}

From beam theory, the displacement field at a point in the beam is given by


  u = -z\frac{dw}{dx} ~~;~~ v = 0 ~~;~~ w = w(x)

The strains are, neglecting Poisson effects,


  \varepsilon_{xx} = \frac{\partial u}{\partial x} = -z\frac{d^2 w}{dx^2} ~~;~~ \varepsilon_{yy} = 0
   ~~;~~ \varepsilon_{zz} = 0

and the corresponding stresses are


  \sigma_{xx} = E\varepsilon_{xx} = -Ez\frac{d^2 w}{dx^2} ~~;~~ \sigma_{yy} = 0
   ~~;~~ \sigma_{zz} = 0

If we also neglect the shear strains and stresses, we get

\begin{align}
  \delta W_{\text{int}} = 
    & = \int_0^L\int_{\mathcal S}\sigma_{xx} \delta\varepsilon_{xx}~dA~dx \\
    & = \int_0^L\int_{\mathcal S} E~\varepsilon_{xx} \delta\varepsilon_{xx}~dA~dx \\
    & = \int_0^L E\frac{d^2w}{dx^2}\frac{d^2(\delta w)}{dx^2} 
           \left(\int_{\mathcal S} z^2~dA\right)~dx \\
    & = \int_0^L E~I\frac{d^2w}{dx^2}\frac{d^2(\delta w)}{dx^2} dx
\end{align}

Therefore, from the principle of virtual work,


  \delta W = \int_0^L \left(E~I\frac{d^2w}{dx^2}\frac{d^2(\delta w)}{dx^2}
     + q~\delta w\right)~dx + P~\delta w(L) = 0

Integrating by parts and after some manipulation, we get,

\begin{align}
  0 &= \int_0^L \left[\frac{d^2}{dx^2}\left(E~I\frac{d^2w}{dx^2}\right)
     + q + P\delta(L-x)\right]\delta w~dx + 
    \left.\left[\left(E~I\frac{d^2w}{dx^2}\right)\delta\left(\frac{dw}{dx}\right)
     +  \frac{d}{dx}\left(E~I\frac{d^2w}{dx^2}\right)\delta w\right]\right|_0^L
\end{align}

where \delta(L-x) is the Dirac delta function,


   \int_{-\infty}^{\infty} \delta(L-x)~f(x)~dx = f(L)

The Euler equation for the beam is, therefore,


  \frac{d^2}{dx^2}\left(E~I\frac{d^2w}{dx^2}\right) + q + P\delta(L-x) = 0

and the boundary conditions are

\begin{align}
  E~I\frac{d^2w}{dx^2}(L) & = 0 \\
  \left.\frac{d}{dx}\left(E~I\frac{d^2w}{dx^2}\right)\right|_{x=L} & = 0
\end{align}


Application of the Hellinger-Prange-Reissner variational principle

The governing equations of the cantilever beam can be written as

Kinematics


  \kappa = \frac{d^2 w}{dx^2} ~~;~~ w(0) = 0 ~~;~~ 
  \left.\frac{dw}{dx}\right|_{x=0} = 0

Constitutive Equation


  M = EI\kappa

Equilibrium (kinetics)


  \frac{d^2M}{dx^2} + q + P\delta(L-x) = 0 ~~;~~ M(L) = 0 ~~;~~ 
  \left.\frac{dM}{dx}\right|_{x=L} = 0

Recall that the Hellinger-Prange-Reissner functional is given by


  {\mathcal H}[s] = \int_{\mathcal{B}} U^c(\boldsymbol{\sigma}) - \int_{\mathcal{B}} \boldsymbol{\sigma}:\boldsymbol{\varepsilon}~dV
    - \int_{\mathcal{B}} \mathbf{f}\bullet\mathbf{u}~dV
    + \int_{\partial{\mathcal{B}}^{u}} \mathbf{t}\bullet(\mathbf{u}-\widehat{\mathbf{u}})~dA
    + \int_{\partial{\mathcal{B}}^{t}} \widehat{\mathbf{t}}\bullet\mathbf{u}~dA

If we apply the strain-displacement constraints using the Lagrange multipliers \boldsymbol{\lambda}\, and the displacement boundary conditions using the Lagrange multipliers \boldsymbol{\mu}\,, we get a modified functional


  \bar{\mathcal H}[\mathbf{u},\boldsymbol{\varepsilon},\boldsymbol{\lambda},\boldsymbol{\mu}] = \int_{\mathcal{B}} \left[U(\boldsymbol{\varepsilon})  
    + \boldsymbol{\lambda}:[\frac{1}{2}(\boldsymbol{\nabla}\mathbf{u}-\boldsymbol{\nabla}\mathbf{u}^T) - \boldsymbol{\varepsilon}]
    - \mathbf{f}\bullet\mathbf{u}\right]~dV
    - \int_{\partial{\mathcal{B}}^{u}} \boldsymbol{\mu}\bullet(\mathbf{u}-\widehat{\mathbf{u}})~dA
    - \int_{\partial{\mathcal{B}}^{t}} \widehat{\mathbf{t}}\bullet\mathbf{u}~dA

For the cantilevered beam, the above functional becomes

\begin{align}
 \bar{\mathcal H}[w,\kappa,\lambda,\mu_1,\mu_2] = &
    \int_0^L \left[\frac{EI}{2}\kappa^2
    + \left(\frac{d^2w}{dx^2}-\kappa\right)\lambda 
    + [q + P\delta(L-x)]~w\right]~dx  \\
    & - M(L)\frac{dw}{dx}(L) - \frac{dM}{dx}(L)~w(L)
    + \mu_1[w(0) - 0] + \mu_2[\frac{dw}{dx}(0) - 0]
\end{align}

Taking the first variation of the functional, we can easily derive the Euler equations and the associated BCs.

\begin{align}
  \delta\kappa :~~~ & EI\kappa - \lambda = 0 \\
  \delta w :~~~ & \frac{d^2\lambda}{dx^2} + q + P\delta(L-x) = 0 \\
  \delta\lambda :~~~ & \frac{d^2 w}{dx^2} -\kappa = 0 
\end{align}

and

\begin{align}
  \frac{d}{dx}(\delta w) :~~~ & \lambda(0) = \mu_2 ~~,~~ \lambda(L) = M(L)\\
  \delta w :~~~ & \frac{d\lambda}{dx}(0) = -\mu_1 ~~,~~ 
      \frac{d\lambda}{dx}(L) = \frac{dM}{dx}(L)\\
  \delta\mu_1 :~~~ & w(0) = 0 \\
  \delta\mu_1 :~~~ & \frac{dw}{dx}(0) = 0
\end{align}

The same process can be used to derive Euler equations using the Hu-Washizu variational principle.

This article is issued from Wikiversity - version of the Monday, February 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.