Introduction to Elasticity/Energy methods example 2

< Introduction to Elasticity

Example 2

Given:

The potential energy functional for a membrane stretched over a simply connected region \mathcal{S} of the x_1-x_2 plane can be expressed as


  \Pi[w(x_1,x_2)] = \frac{1}{2}\int_{\mathcal{S}} \eta\left[(w_{,1})^2 + (w_{,2})^2\right]
   ~dA - \int_{\mathcal S} pw~dA

where w(x_1,x_2) is the deflection of the membrane, p(x_1,x_2) is the prescribed transverse pressure distribution, and \eta is the membrane stiffness.

Find:

  1. The governing differential equation (Euler equation) for w(x_1,x_2) on {\mathcal S}.
  2. The permissible boundary conditions at the boundary \partial{\mathcal S} of {\mathcal S}.

Solution

The principle of minimum potential energy requires that the functional \Pi be stationary for the actual displacement field w(x_1,x_2). Taking the first variation of \Pi, we get


  \delta\Pi = \frac{\eta}{2}\int_{\mathcal S} \left[(2 w_{,1})\delta w_{,1} + 
    (2 w_{,2})\delta w_{,2}\right] ~dA - \int_{\mathcal S} p~\delta w~dA

or,


  \delta\Pi = \eta\int_{\mathcal S} \left[w_{,1}~\delta w_{,1} + 
    w_{,2}~\delta w_{,2}\right] ~dA - \int_{\mathcal S} p~\delta w~dA

Now,

\begin{align}
  (w_{,1}~\delta w)_{,1} & = w_{,11}~\delta w + w_{,1}~\delta w_{,1} \\
  (w_{,2}~\delta w)_{,2} & = w_{,22}~\delta w + w_{,2}~\delta w_{,2} 
\end{align}

Therefore,


  w_{,1}~\delta w_{,1} + w_{,2}~\delta w_{,2} = 
  (w_{,1}~\delta w)_{,1} - w_{,11}~\delta w + 
  (w_{,2}~\delta w)_{,2} - w_{,22}~\delta w

Plugging into the expression for \delta\Pi,


  \delta\Pi = \eta\int_{\mathcal S} 
  \left[(w_{,1}~\delta w)_{,1} + (w_{,2}~\delta w)_{,2} -
        (w_{,11} + w_{,22})~\delta w\right]~dA
    - \int_{\mathcal S} p~\delta w~dA

or,


  \delta\Pi = \eta\int_{\mathcal S} 
  \left[(w_{,1}~\delta w)_{,1} + (w_{,2}~\delta w)_{,2}\right]~dA -
       \eta\int_{\mathcal S} \nabla^2{w}~\delta w~dA
    - \int_{\mathcal S} p~\delta w~dA

Now, the Green-Riemann theorem states that


   \int_{\mathcal S} (Q_{,1} - P_{,2})~dA = \oint_{\partial{\mathcal S}}
    (P~dx_1 + Q~dx_2)

Therefore,


  \delta\Pi = \eta\oint_{\partial{\mathcal S}} 
  \left[(w_{,1}~\delta w)~dx_2 - (w_{,2}~\delta w)~dx_1\right] -
       \int_{\mathcal S}\left[\eta\nabla^2{w}+p\right]~\delta w~dA

or,


  \delta\Pi = \eta\oint_{\partial{\mathcal S}} 
  \left[w_{,1}~\frac{dx_2}{ds} - w_{,2}~\frac{dx_1}{ds}\right]\delta w~ds -
       \int_{\mathcal S}\left[\eta\nabla^2{w}+p\right]~\delta w~dA

where s is the arc length around \partial{\mathcal S}.


The potential energy function is rendered stationary if \delta\Pi = 0. Since \delta w is arbitrary, the condition of stationarity is satisfied only if the governing differential equation for w(x_1,x_2) on {\mathcal S} is


  {
       \eta\nabla^2{w}+p = 0   ~~~~~\forall~~(x_1,x_2)~\in~{\mathcal S}
  }

The associated boundary conditions are


  {
  w_{,1}~\frac{dx_2}{ds} - w_{,2}~\frac{dx_1}{ds} = 0
  ~~~~~\forall~~(x_1,x_2)~\in~\partial{\mathcal S} 
  }
This article is issued from Wikiversity - version of the Monday, February 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.