Introduction to Elasticity/Energy methods example 1

< Introduction to Elasticity

Example 1

Given:


  \Pi^c[\boldsymbol{\sigma}(\mathbf{x}) + \Delta\boldsymbol{\sigma}(\mathbf{x})] - \Pi^c[\boldsymbol{\sigma}(\mathbf{x})] =
   \int_{\mathcal R} [U^c(\boldsymbol{\sigma}+\Delta\boldsymbol{\sigma}) - U^c(\boldsymbol{\sigma}) - \boldsymbol{\varepsilon}:\Delta\boldsymbol{\sigma}]~dV

Show:


  \Pi^c[\boldsymbol{\sigma}(\mathbf{x}) + \Delta\boldsymbol{\sigma}(\mathbf{x})] - \Pi^c[\boldsymbol{\sigma}(\mathbf{x})] =
   \int_{\mathcal R} U^c(\Delta\boldsymbol{\sigma})~dV

Solution

For a linear elastic material, the complementary strain energy density is given by


  U^c(\boldsymbol{\sigma}) = \frac{1}{2}\boldsymbol{\sigma}:\text{S}:\boldsymbol{\sigma}

where \text{S} is the compliance tensor.

Therefore,


  U^c(\boldsymbol{\sigma}+\Delta\boldsymbol{\sigma}) = 
    \frac{1}{2}(\boldsymbol{\sigma}+\Delta\boldsymbol{\sigma}):\text{S}:(\boldsymbol{\sigma}+\Delta\boldsymbol{\sigma}) =
    \frac{1}{2}(\sigma_{ij}+\Delta\sigma_{ij})S_{ijkl}(\sigma_{kl}+\Delta\sigma_{kl})

or (using the symmetry of the compliance tensor),

\begin{align}
  U^c(\boldsymbol{\sigma}+\Delta\boldsymbol{\sigma}) & = 
    \frac{1}{2}\left[\sigma_{ij}\sigma_{kl}+\sigma_{ij}\Delta\sigma_{kl}+
      \sigma_{kl}\Delta\sigma_{ij}+\Delta\sigma_{ij}\Delta\sigma_{kl}\right] 
      S_{ijkl} \\
   &= \frac{1}{2}\left[\sigma_{ij}S_{ijkl}\sigma_{kl}+
      \sigma_{ij}S_{ijkl}\Delta\sigma_{kl}+
      \sigma_{kl}S_{ijkl}\Delta\sigma_{ij}+
      \Delta\sigma_{ij}S_{ijkl}\Delta\sigma_{kl}\right] \\
   &= \frac{1}{2}\left[\sigma_{ij}S_{ijkl}\sigma_{kl}+
      \varepsilon_{kl}\Delta\sigma_{kl}+ \varepsilon_{ij}\Delta\sigma_{ij}+
      \Delta\sigma_{ij}S_{ijkl}\Delta\sigma_{kl}\right] \\
   &= \frac{1}{2}\left[\sigma_{ij}S_{ijkl}\sigma_{kl}+
      2\varepsilon_{kl}\Delta\sigma_{kl}+ 
      \Delta\sigma_{ij}S_{ijkl}\Delta\sigma_{kl}\right] \\
   &= \frac{1}{2}\boldsymbol{\sigma}:\text{S}:\boldsymbol{\sigma} + \boldsymbol{\varepsilon}:\Delta\boldsymbol{\sigma} + \frac{1}{2}\Delta\boldsymbol{\sigma}:\text{S}:
      \Delta\boldsymbol{\sigma} \\
   &= U^c(\boldsymbol{\sigma}) + \boldsymbol{\varepsilon}:\Delta\boldsymbol{\sigma} + U^c(\Delta\boldsymbol{\sigma})
\end{align}

Therefore,


  U^c(\boldsymbol{\sigma}+\Delta\boldsymbol{\sigma}) = U^c(\boldsymbol{\sigma}) + \boldsymbol{\varepsilon}:\Delta\boldsymbol{\sigma} + U^c(\Delta\boldsymbol{\sigma})

Plugging into the given equation


  \Pi^c[\boldsymbol{\sigma}(\mathbf{x}) + \Delta\boldsymbol{\sigma}(\mathbf{x})] - \Pi^c[\boldsymbol{\sigma}(\mathbf{x})] =
   \int_{\mathcal R} [U^c(\boldsymbol{\sigma}) + \boldsymbol{\varepsilon}:\Delta\boldsymbol{\sigma} + U^c(\Delta\boldsymbol{\sigma}) 
   - U^c(\boldsymbol{\sigma}) - \boldsymbol{\varepsilon}:\Delta\boldsymbol{\sigma}]~dV

or,


  {
  \Pi^c[\boldsymbol{\sigma}(\mathbf{x}) + \Delta\boldsymbol{\sigma}(\mathbf{x})] - \Pi^c[\boldsymbol{\sigma}(\mathbf{x})] =
   \int_{\mathcal R} U^c(\Delta\boldsymbol{\sigma})~dV 
   }

Hence shown.

This article is issued from Wikiversity - version of the Monday, February 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.