Introduction to Elasticity/Constitutive example 2

< Introduction to Elasticity

Example 1

Convert the stress-strain relation for isotropic materials (in matrix form) into an equation in index notation. Show all the steps in the process.

Solution

The stress-strain relation is


  \begin{bmatrix}
    \varepsilon_{11}\\\varepsilon_{22}\\\varepsilon_{33}\\\varepsilon_{23}\\\varepsilon_{31}\\\varepsilon_{12}
  \end{bmatrix}
  = \frac{1}{E}
  \begin{bmatrix}
    1 & -\nu & -\nu & 0 & 0 & 0 \\
    -\nu & 1 & -\nu & 0 & 0 & 0 \\
    -\nu & -\nu & 1 & 0 & 0 & 0 \\
    0 & 0 & 0 & 1+\nu & 0 & 0\\
    0 & 0 & 0 & 0 & 1+\nu  & 0\\
    0 & 0 & 0 & 0 & 0 & 1+\nu \\
  \end{bmatrix}
  \begin{bmatrix}
    \sigma_{11}\\\sigma_{22}\\\sigma_{33}\\\sigma_{23}\\\sigma_{31}\\\sigma_{12}
  \end{bmatrix}

Let us expand out the terms and put all of them in a similar form. Thus,

\begin{align}
  E \varepsilon_{11} & = (1+\nu)\sigma_{11} - \nu(\sigma_{11}+\sigma_{22}+\sigma_{33})(1)\\
  E \varepsilon_{22} & = (1+\nu)\sigma_{22} - \nu(\sigma_{11}+\sigma_{22}+\sigma_{33})(1)\\
  E \varepsilon_{33} & = (1+\nu)\sigma_{33} - \nu(\sigma_{11}+\sigma_{22}+\sigma_{33})(1)\\
  E \varepsilon_{23} & = (1+\nu)\sigma_{23} - \nu(\sigma_{11}+\sigma_{22}+\sigma_{33})(0)\\
  E \varepsilon_{31} & = (1+\nu)\sigma_{31} - \nu(\sigma_{11}+\sigma_{22}+\sigma_{33})(0)\\
  E \varepsilon_{12} & = (1+\nu)\sigma_{12} - \nu(\sigma_{11}+\sigma_{22}+\sigma_{33})(0)
\end{align}

We know that \sigma_{11}+\sigma_{22}+\sigma_{33} = \sigma_{kk}. Also a quantity that is 1 when i=j and 0 when i \ne j can be represented by the Kronecker \delta. Therefore, we can write the above equations as


  E \varepsilon_{ij} = (1+\nu)\sigma_{ij} - \nu\sigma_{kk}\delta_{ij}

or,


  \varepsilon_{ij} = \frac{(1+\nu)}{E}\sigma_{ij} - 
                     \frac{\nu}{E}\sigma_{kk}\delta_{ij}
This article is issued from Wikiversity - version of the Monday, February 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.