Introduction to Elasticity/Body force potential

< Introduction to Elasticity

Body force potential

How do we find the body force potential? Before we proceed let us examine what conservative vector fields are.

Conservative vector fields


  f_{2,1} - f_{1,2} = 0 ~;~~           f_{3,2} - f_{2,3} = 0 ~;~~           f_{1,3} - f_{3,1} = 0  \qquad \text{(28)}

or


\boldsymbol{\nabla}\times{\mathbf{f}} = 0 \qquad \text{(29)}

The field has to be irrotational.

Determining the body force potential

Suppose a body is rotating with an angular velocity \dot{\theta} and an angular acceleration of \ddot{\theta}. Then,

 \text{(30)} \qquad 
    \mathbf{a}_r = -\dot{\theta}^2 r \widehat{\mathbf{e}}_{r}  ~;~~
    \mathbf{a}_{\theta} = -\ddot{\theta} r \widehat{\mathbf{e}}_{\theta}

Let us assume that the (r,\theta) coordinate system is oriented at an angle \theta to the (x_1,x_2) system. Then,

\text{(31)} \qquad 
    \begin{bmatrix}a_1\\a_2\end{bmatrix} =
    \begin{bmatrix}\cos\theta & -\sin\theta \\ \sin\theta & \cos\theta
    \end{bmatrix} \begin{bmatrix}a_r\\a_{\theta}\end{bmatrix}

or,

\text{(32)} \qquad 
    \begin{bmatrix}a_1\\a_2\end{bmatrix} =
    \begin{bmatrix}\cos\theta & -\sin\theta \\ \sin\theta & \cos\theta
    \end{bmatrix} \begin{bmatrix}-\dot{\theta}^2r\\-\ddot{\theta}r\end{bmatrix}

or,

\begin{align}
    \text{(33)} \qquad a_1 & = -\dot{\theta}^2r\cos\theta + \ddot{\theta}r\sin\theta\\
    \text{(34)} \qquad a_2 & = -\dot{\theta}^2r\sin\theta - \ddot{\theta}r\cos\theta
  \end{align}

or,

\begin{align}
   \text{(35)} \qquad  a_1 & = -\dot{\theta}^2 x_1 + \ddot{\theta} x_2 \\
   \text{(36)} \qquad  a_2 & = -\dot{\theta}^2 x_2 - \ddot{\theta} x_1 
  \end{align}

If the origin is accelerating with an acceleration \mathbf{a}_0 (for example, due to gravity), we have,

\begin{align}
   \text{(37)} \qquad  a_1 & = a_{01} -\dot{\theta}^2 x_1 + \ddot{\theta} x_2 \\
   \text{(38)} \qquad  a_2 & = a_{02} -\dot{\theta}^2 x_2 - \ddot{\theta} x_1 
  \end{align}:

The body force field is given by

\begin{align}
   \text{(39)} \qquad  f_1 & = -\rho\left(a_{01}-\dot{\theta}^2x_1+\ddot{\theta}x_2\right)
             \\
   \text{(40)} \qquad f_2 & = -\rho\left(a_{02}-\dot{\theta}^2x_2-\ddot{\theta}x_1\right)
              
  \end{align}

For this vector body force field to be conservative, we require that,


     f_{1,2} - f_{2,1} = 0 \Rightarrow 2\ddot{\theta} = 0

Hence, the field \mathbf{f} is conservative only if the rotational acceleration is zero, i.e. = the rotational velocity is constant.=

\begin{align}
    \text{(41)} \qquad  f_1 & = -\rho\left(a_{01}-\dot{\theta}^2x_1\right)\\
    \text{(42)} \qquad f_2 & = -\rho\left(a_{02}-\dot{\theta}^2x_2\right) 
  \end{align}

Now,


    f_1 = - V_{,1} ~;~~ f_2 = - V_{,2}

Hence,

\begin{align}
     \text{(43)} \qquad V_{,1} & = \rho\left(a_{01}-\dot{\theta}^2x_1\right)\\
   \text{(44)} \qquad  V_{,2} & = \rho\left(a_{02}-\dot{\theta}^2x_2\right) 
  \end{align}

Integrating equation (43),

\text{(45)} \qquad 
    V = \rho\left(a_{01} x_1 -\dot{\theta}^2\cfrac{x_1^2}{2}\right) + h(x_2)

Hence,

(\text{46)} \qquad 
    V_{,2} = h^{'}(x_2) = \rho\left(a_{02}-\dot{\theta}^2x_2\right)

Integrating,

\text{(47)} \qquad 
    h(x_2) = \rho\left(a_{02} x_2 -\dot{\theta}^2\cfrac{x_2^2}{2}\right) + C

Without loss of generality, we can set C = 0. Then,

\text{(48)} \qquad 
    V = \rho\left(a_{01} x_1 -\dot{\theta}^2\cfrac{x_1^2}{2}\right) +
        \rho\left(a_{02} x_2 -\dot{\theta}^2\cfrac{x_2^2}{2}\right)

or,

\text{(49)} \qquad 
    V = \rho\left[a_{01} x_1 + a_{02} x_2 - \cfrac{\dot{\theta}^2}{2}
          \left(x_1^2 + x_2^2\right)\right]

For a body loaded by gravity only, we can set a_{01} = 0, a_{02} = -g and \dot{\theta} = 0, to get

\text{(50)} \qquad 
    V = -\rho g x_2 \,

For a body loaded by rotational inertia only, we can set a_{01} = 0, and a_{02} = 0, and get

\text{(51)} \qquad 
    V = -\cfrac{\rho\dot{\theta}^2}{2} \left(x_1^2 + x_2^2\right)

We can see that an Airy stress function + a body force potential of the form shown in equation (49) can be used to solve two-dimensional elasticity problems of plane stress/plane strain.

This article is issued from Wikiversity - version of the Monday, February 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.