Introduction to Elasticity/Beam bending example 1

< Introduction to Elasticity

Example 1

Given:

A long rectangular beam with cross section ab

Find:

A solution for the displacement and stress fields, using strong boundary conditions on the edges x_2 = 0 and x_2 = b.

[Hint : Assume that the displacement can be expressed as a second degree polynomial (using the Pascal's triangle to determine the terms) u(x,y) = Ax^2 + By^2 + Cxy + Dx + Ey + F]

Solution

Step 1: Boundary conditions

\begin{align}
  \text{at}~ x_1 & = 0 ~;~~ \sigma_{13} = 0 \\
  \text{at}~ x_1 & = a ~;~~ u_3 = 0 \\
  \text{at}~ x_2 & = 0 ~;~~ \sigma_{23} = 0 \\
  \text{at}~ x_2 & = b ~;~~ \sigma_{23} = S 
\end{align}

Step 2: Assume a solution

Let us assume antiplane strain


  u_3(x_1,x_2) = Ax_1^2 + Bx_2^2 + Cx_1x_2 + Dx_1 + Ex_2 + F ~;~~
  u_1 = u_2 = 0~.

Step 3: Calculate the stresses

The stresses are given by \sigma_{\alpha 3} = \mu u_{3,\alpha}, and \sigma_{11} = \sigma_{22} = \sigma_{33} = \sigma_{12} = 0. Therefore,

\begin{align}
  \sigma_{13} & = \mu u_{3,1} = \mu(2Ax_1 + Cx_2 + D) \\
  \sigma_{23} & = \mu u_{3,2} = \mu(2Bx_2 + Cx_1 + E) 
\end{align}

Step 4: Satisfy stress BCs

Thus we have,

\begin{align}
  0 & = \mu(Cx_2 + D) \\
  0 & = \mu(Cx_1 + E) \\
  S & = \mu(2bB + Cx_1 + E)
\end{align}

Since x_1 and x_2 can be arbitrary,  C = D = E = 0.

Hence, B = S/2\mu b which gives us

\begin{align}
  u_3 & = Ax_1^2 + \frac{S}{2\mu b}x_2^2 + F \\
  \sigma_{13} & = \mu(2Ax_1) \\
  \sigma_{23} & = \mu(2\frac{S}{2\mu b}x_2) 
\end{align}

Assume that the body force is zero. Then the equilibrium condition is \nabla^2{u_3} = 0. Therefore,

\begin{align}
  & u_{3,11} + u_{3,22}  = 0 \\
  \text{or,} \quad &  2A + 2\frac{S}{2\mu b}  = 0 \\
  \text{or,} \quad &  A  = - \frac{S}{2\mu b}
\end{align}

Therefore, the stresses are given by


  { \sigma_{13} = -\frac{S}{b} x_1 ~;~~ \sigma_{23} = \frac{S}{b} x_2 }

Step 5: Satisfy displacement BCs

The displacement is given by


  u_3  = -\frac{S}{2\mu b}x_1^2 + \frac{S}{2\mu b}x_2^2 + F

If we substitute x_1 = a, we cannot determine the constant F uniquely.

Hence the displacement boundary conditions have to be applied in a weak sense,

\begin{align}
   & \int_0^b u_3(a, x_2) dx_2  = 0 \\
   \text{or,} \quad &  \int_0^b \left(-\frac{S}{2\mu b}a^2 + \frac{S}{2\mu b}x_2^2 + 
                     F\right) dx_2  = 0 \\
   \text{or,} \quad &  \left. \left[
               \frac{S}{2\mu b} \left(-a^2 x_2 + \frac{x_2^3}{3}\right)
                     + F x_2 \right]\right|_0^b  = 0\\
   \text{or,} \quad & \frac{S}{2\mu b} \left(-a^2 b + \frac{b^3}{3}\right)
                     + F b = 0\\
   \text{or,} \quad & \frac{S}{2\mu} \left(-a^2 + \frac{b^2}{3}\right) + Fb = 0\\
   \text{or,} \quad & \frac{S}{2\mu} \left(-\frac{a^2}{b}+\frac{b}{3}\right)+ F = 0\\
   \text{or,} \quad & F = \frac{S}{2\mu b} \left(a^2 - \frac{b^2}{3}\right)
\end{align}

Therefore,


  {
  u_3  = \frac{S}{2\mu b}\left(x_2^2 - x_1^2 + a^2 - \frac{b^2}{3}\right)}
This article is issued from Wikiversity - version of the Monday, February 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.