Introduction to Elasticity/Axially loaded wedge

< Introduction to Elasticity

Axially Loaded Wedge

Elastic wedge loaded by an axial force

The BCs at \theta = \pm \beta are

\text{(30)} \qquad 
t_r = t_{\theta} = 0 ~;~~ \widehat{\mathbf{n}}{} = \pm \widehat{\mathbf{e}}{\theta} \Rightarrow
\sigma_{r\theta} = \sigma_{\theta\theta} = 0

What about the concentrated force BC?

At r = a, the BCs are

\text{(31)} \qquad 
\widehat{\mathbf{n}}{} = \widehat{\mathbf{e}}{r} \Rightarrow
\sigma_{r\theta} = t_r ~;~~ \sigma_{\theta\theta} = t_{\theta}

For equilibrium, \sum F_1 = \sum F_2 = \sum M_3 = 0. Therefore,

\begin{align}
P_1 + \int_{-\beta}^{\beta} \left[ \sigma_{rr}(a,\theta)\cos\theta
- \sigma_{r\theta}(a,\theta)\sin\theta\right] a~d\theta = 0 
\text{(32)} \qquad \\
\int_{-\beta}^{\beta} \left[ \sigma_{rr}(a,\theta)\sin\theta
+ \sigma_{r\theta}(a,\theta)\cos\theta\right] a~d\theta = 0 
\text{(33)} \qquad \\
\int_{-\beta}^{\beta} \left[ a \sigma_{r\theta}(a,\theta)
\right] a~d\theta = 0
\text{(34)} \qquad  
\end{align}

These constraint conditions are equivalent to the concentrated force BC.

Solution Procedure


Assume that \sigma_{r\theta}(r,\theta) = 0. This satisfies the traction BCs on \theta = \pm\beta and equation (34). Therefore,

\text{(35)} \qquad 
\sigma_{r\theta} = 
\frac{\partial }{\partial} {}{r}\left(\frac{1}{r}\frac{\partial }{\partial} {\varphi}{\theta}\right) = 0 
\Rightarrow \varphi = r\eta(\theta) + \zeta(r)

Hence,

\text{(36)} \qquad 
\sigma_{\theta\theta} = 
\frac{\partial^2 }{\partial \varphi \partial r} = \zeta^{''}(r)

That means \sigma_{\theta\theta} is independent of \theta. Therefore, in order to satisfy the BCs, \sigma_{\theta\theta} = 0, i.e.,

\text{(37)} \qquad 
\zeta(r) = C_1 r + C_2 \Rightarrow 
\varphi = r\eta(\theta) + C_1 r = r[\eta(\theta)+C_1] = r\xi(\theta)

Checking for compatibility, \nabla^4{\varphi} = 0, we get

\text{(38)} \qquad 
\xi^{(IV)}(\theta) + 2\xi^{''}(\theta) + \xi(\theta) = 0

The general solution is

\text{(39)} \qquad 
\xi(\theta) = A\sin\theta + B\cos\theta + C\theta\sin\theta + 
D\theta\cos\theta

Therefore,

\text{(40)} \qquad 
{
\varphi = r\left[A\sin\theta + B\cos\theta + C\theta\sin\theta + 
 D\theta\cos\theta\right] }

The only non-zero stress is \sigma_{rr}.

\text{(41)} \qquad 
\sigma_{rr} = \frac{1}{r}\left[2C\cos\theta - 2D\sin\theta\right]

Plugging into equation (33), we get

\text{(42)} \qquad 
-D\left[2\beta - \sin(2\beta)\right] = 0 \Rightarrow D = 0

Hence,

\text{(43)} \qquad 
\sigma_{rr} = \frac{2C}{r}\cos\theta

Plugging into equation (32), we get

\text{(44)} \qquad 
-P = C\left[2\beta + \sin(2\beta)\right] \Rightarrow 
 C = \frac{-P}{2\beta+\sin(2\beta)}

Therefore,

\text{(45)} \qquad 
{
\varphi = Cr\theta\sin\theta =
\frac{-P r\theta\sin\theta}{2\beta+\sin(2\beta)}}

The stress state is

\text{(46)} \qquad 
{
\sigma_{rr} = -\frac{2P\cos\theta}{r[2\beta+\sin(2\beta)]} ~;~~
\sigma_{r\theta} = 0 ~;~~ \sigma_{\theta\theta} = 0
}

Special Case : \beta = \pi/2


A concentrated point load acting on a half plane.

\text{(47)} \qquad 
{
\sigma_{rr} = -\frac{2P\cos\theta}{\pi r} ~;~~
\sigma_{r\theta} = 0 ~;~~ \sigma_{\theta\theta} = 0
}

Displacements

\begin{align}
2\mu u_r & = -\frac{\partial }{\partial} {\varphi}{r} + \alpha r \frac{\partial }{\partial} {\psi}{\theta} \\
2\mu u_{\theta} & = -\frac{1}{r}\frac{\partial }{\partial} {\varphi}{\theta} + 
\alpha r^2 \frac{\partial }{\partial} {\psi}{r}
\end{align}

where

\begin{align}
\nabla^2{\psi} = 0 \\
\frac{\partial }{\partial} {}{r}\left(r\frac{\partial }{\partial} {\psi}{\theta}\right) = \nabla^2{\varphi}
\end{align}

Plug in \varphi = Cr\theta\sin\theta,

\begin{align}
& \frac{\partial }{\partial} {}{r}\left(r\frac{\partial }{\partial} {\psi}{\theta}\right)= \nabla^2{\varphi} 
 \\
\Rightarrow &
\frac{\partial }{\partial} {}{r}\left(r\frac{\partial }{\partial} {\psi}{\theta}\right)= 
\frac{2C}{r}\cos\theta
 \\
\Rightarrow &
r\frac{\partial }{\partial} {\psi}{\theta}= 2C \ln r\cos\theta + A(\theta)
 \\
\Rightarrow &
\frac{\partial }{\partial} {\psi}{\theta}= 2C \frac{\ln r}{r} \cos\theta + 
\frac{A(\theta)}{r}
 \\
\Rightarrow &
\psi= 2C \frac{\ln r}{r} \sin\theta + \frac{\eta(\theta)}{r} + 
\xi{r}
\end{align}

Plug \psi into \nabla^2{\psi} = 0,

\begin{align}
& \frac{1}{r^3}\eta^{''}(\theta) + 
\frac{1}{r^3}\eta(\theta) + \xi^{''}(r) + \frac{1}{r}\xi^{'}(r) 
-\frac{4C}{r^3}\sin\theta= 0 
 \\
 \Rightarrow &
\eta^{''}(\theta) + \eta(\theta) + r^3\xi^{''}(r) + r^2\xi^{'}(r) 
- 4C\sin\theta= 0 
\end{align}

Hence,

\begin{align}
\eta^{''}(\theta) + \eta(\theta) - 4C\sin\theta & = b\\
r^3\xi^{''}(r) + r^2\xi^{'}(r) & = -\frac{b}{r^3}
\end{align}

Solving,

\begin{align}
\eta(\theta) & = -2C\theta\cos\theta + d\cos\theta + e\sin\theta + b\\
\xi^{'}(r) & = \frac{f}{r} + \frac{b}{r^2}
\end{align}

Therefore,

\begin{align}
2\mu u_r & = 2\alpha C \ln r \cos\theta + (2\alpha-1)C\theta\sin\theta +
\alpha(e - 2C)\cos\theta - \alpha d\sin\theta \\
2\mu u_{\theta} & = -2\alpha C \ln r \sin\theta + (2\alpha-1)C\sin\theta +
(2\alpha - 1)C\theta\cos\theta - \alpha d\cos\theta 
-\alpha e \sin\theta + \alpha f r
\end{align}

To fix the rigid body motion, we set u_{\theta} = 0 when \theta = 0, and set u_r = 0 when \theta = 0 and r = L.Then,

\begin{align}
u_r & = \frac{\alpha C}{\mu}\ln\left(\frac{r}{L}\right)\cos\theta + 
\frac{(2\alpha-1)C}{2\mu}\theta\sin\theta \\
u_{\theta} & = -\frac{\alpha C}{\mu}\ln\left(\frac{r}{L}\right)\sin\theta +
\frac{(2\alpha-1)C}{2\mu}\theta\cos\theta -
\frac{C}{2\mu}\sin\theta
\end{align}

The displacements are singular at r = 0 and r = \infty. At \theta = 0,

\begin{align}
u_r & = \frac{\alpha C}{\mu}\ln\left(\frac{r}{L}\right)\\
u_{\theta} & = 0
\end{align}

Is the small strain assumption satisfied ?

This article is issued from Wikiversity - version of the Wednesday, August 08, 2007. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.