Geochronology/Mesozoic

< Geochronology
Painting of a late Jurassic Scene on one of the large island in the Lower Saxony basin in northern Germany. Credit: Gerhard Boeggemann.

Geochronology/Mesozoic is the science of applying dates in the past to rocks of the Mesozoic.

Notations

Let

  1. ALMA represent the Asian Land Mammal Age,
  2. b2k represent before AD 2000,
  3. BP represent before present, as the chart is for 2008, this may require an added -8 for b2k,
  4. ELMMZ represent the European Land Mammal Mega Zone,
  5. FAD represent first appearance datum,
  6. FO represent first occurrence,
  7. Ga represent Gegaannum, billion years ago, or -109 b2k,
  8. GICC05 represent Greenland Ice Core Chronology 2005,
  9. GRIP represent Greenland Ice Core Project,
  10. GSSP represent Global Stratotype Section and Point,
  11. HO represent highest occurrence,
  12. ICS represent the International Commission on Stratigraphy,
  13. IUGS represent the International Union of Geological Sciences,
  14. LAD represent last appearance datum,
  15. LO represent lowest occurrence,
  16. Ma represent Megaannum, million years ago, or -106 b2k,
  17. NALMA represent the North American Land Mammal Age,
  18. NGRIP represent North Greenland Ice Core Project, and
  19. SALMA represent South American Land Mammal Age.

"The term b2 k [b2k] refers to the ice-core zero age of AD 2000; note that this is 50 years different from the zero yr for radiocarbon, which is AD 1950 [...]."[1]

Mesozoic time frames

Sortable table
Name (English)[2] base/start (Ma)[3] top/end (Ma)[3] status subdivision of usage named after author, year
Aalenian 175.6 ± 2.0 171.6 ± 3.0 age Jurassic ICS Aalen (Germany)
Aegean 245 ± 1.5 244 age Middle Triassic Europe Aegean Sea
Alaunian 216 211 sub-age Upper Triassic Europe
Albian 112.0 ± 1.0 99.6 ± 0.9 age Cretaceous ICS Albia, Latin name of the river Aube (France) d'Orbigny, 1842
Anisian 245.0 ± 1.5 237.0 ± 2.0? age/Stage Middle Triassic ICS Anisus, Latin name for the river Enns (Austria)
Aptian 125.0 ± 1.0 112.0 ± 1.0 age Cretaceous ICS Apt (France) d'Orbigny, 1840
Aquilan 85.2 82.2 NALMA Cretaceous North America
Arowhanan 95.2 92.1 age Cretaceous New Zealand Arowhana
Austinian age Cretaceous south and east of the US Austin, Texas Murray, 1961
Bajocian 171.6 ± 3.0 167.7 ± 3.5 age Jurassic ICS Bayeux (France) d'Orbigny
Barremian 130.0 ± 1.5 125.0 ± 1.0 age Cretaceous ICS Barrême (France) Coquand, 1873
Bathonian 167.7 ± 3.5 164.7 ± 4.0 age Jurassic ICS Bath (England)
Bedoulian 129.97 125.0 sub-age Cretaceous regional
Berriasian 145.5 ± 4.0 140.2 ± 3.0 age Cretaceous ICS Berrias (France)
Bithynian Substage Middle Triassic Germany
Brahmanian 252.6 251 Stage Lower Triassic India, Germany
Buntsandstein[4] 251.0 ± 0.4 246.6[5] epoch/subperiod Triassic Europe German: bunte Sandstein = coloured sandstone Von Alberti, 1834
Callovian 164.7 ± 4.0 161.2 ± 4.0 age Jurassic ICS Kellaways (England) d'Orbigny
Campanian 83.5 ± 0.7 70.6 ± 0.6 age Cretaceous ICS Champagne (France) Coquand, 1857
Carixian 189.6 ± 1.5 sub-age Jurassic regional
Carnian 228.0 ± 2.0 216.5 ± 2.0 age Late Triassic ICS Carnic Alps (Austria) Mojsisovics, 1869
Cenomanian 99.6 ± 0.9 93.5 ± 0.8 age Cretaceous ICS Latin: Cenomanium = Le Mans (France) d'Orbigny, 1847
Clansayesian 115.0 112.0 sub-age Cretaceous
Coniacian 89.3 ± 1.0 85.8 ± 0.7 age Cretaceous ICS Cognac (France) Coquand, 1857
Cordevolian 237 ~236 sub-age Late Triassic regional
Cretaceous 145.5 ± 4.0 65.5 ± 0.3 period Mesozoic ICS Crete; Latin creta=chalk d'Omalius d'Halloy, 1822
Dienerian 251.6 251 Substage Lower Triassic
Dogger[4] 175.6 ± 2.0 161.2 ± 4.0 epoch Jurassic Northern Europe dogger=ironrich sediment type
Domerian 183.0 ± 1.5 sub-age Jurassic regional
Eaglefordian age Cretaceous Gulf and Atlantic coast of the US Eagle Ford, Dallas, Texas Murray, 1961
Early Triassic Triassic
Edmontonian 80.8 70.7 NALMA Cretaceous North America
Emscherian 89.5 83.5 age Cretaceous Germany
Fassanian 237 ± 2.0? 233? sub-age/substage Middle Triassic Europe
Gallic 130.0 ± 1.5 89.3 ± 1.0 epoch Cretaceous obsolete
Gandarian 251.6 251 Substage Lower Triassic India, Germany
Gangetian 252.6 251.6 Substage Lower Triassic India, Germany
Gargasian 121.0 115.0 sub-age Cretaceous regional
Gaultian sub-age Cretaceous regional
Gulf(-ian) epoch Cretaceous south and east of the US the Mexican Gulf
Haumurian 84 65.5 age Cretaceous New Zealand
Hauterivian 136.4 ± 2.0 130.0 ± 1.5 age Cretaceous ICS Hauterive (Switzerland) Renevier, 1873
Hettangian 199.6 ± 0.6 196.5 ± 1.0 age Jurassic ICS Hettange-Grande (France) Renevier, 1864
Houldjinian 37.2 33.9 ALMA Asia
Illyrian 240 ± 2.0 237 ± 2.0? sub-age/Substage Middle Triassic Europe
Induan 251.0 ± 0.4 249.7 ± 0.7 age Triassic ICS river Indus Kiparisova & Popov, 1956
Judithian 82.2 80.8 NALMA Cretaceous North America
Julian 229.6 ± 2.0 222.5 sub-age Late Triassic Europe
Jurassic 199.6 ± 0.6 145.5 ± 4.0 period Mesozoic ICS Jura mountains Brongniart
Karoo Ice Age ~360 ~260 ice age Phanerozoic Karoo (South Africa)
Kekeamuan 28.4 33.9 ALMA Asia
Keuper[4] ±230 199.6 epoch Triassic Europe Von Alberti, 1834
Kimmeridgian 155.7 ± 4.0 150.8 ± 4.0 age Jurassic ICS Kimmeridge (England) d'Orbigny
Korangan 117.5 108.4 age Cretaceous New Zealand
Lacian 217.4 ± 2.0 211 sub-age Upper Triassic Europe
Ladinian 237.0 ± 2.0 228.0 ± 2.0 age Middle Triassic ICS Ladini, people in northern Italy Bittner, 1892
Lancian 70.7 65.5 NALMA Cretaceous North America
Late Triassic 237 age Triassic Germany
Lias[4] 199.6 ± 0.6 175.6 ± 2.0 epoch Jurassic Northern Europe unclear
Longobardian 233? 229.6 ± 2.0? sub-age/substage Middle Triassic Europe
Lotharingian 193.3 ± 0.7 189.6 ± 0.7 substage Jurassic
Lower Triassic 247 252.6 Triassic Germany
Maastrichtian 70.6 ± 0.6 65.5 ± 0.3 age Cretaceous ICS Maastricht (Netherlands) Dumont, 1849
Malm[4] 161.2 ± 4.0 145.5 ± 4.0 epoch Jurassic Europe Old English: malm = calcareous soil
Mangaotanean 92.1 89.1 age Cretaceous New Zealand
Mesozoic 251.0 ± 0.7 65.5 ± 0.3 era ICS middle life
Middle Triassic 247 237 age Triassic Germany
Motuan 103.3 100.2 age Cretaceous New Zealand
Muschelkalk[4] 243 ± 2 235 ± 2 epoch Triassic Europe German: limestone with mussels Füchsel, 1761
Navarroan age Cretaceous-Paleocene south and east of the US Navarro, Texas Murray, 1961
Neocomian 145.5 125.0/130.0 epoch obsolete Neocomium, Latin name for Neuchâtel
Ngaterian 100.2 95.2 age Cretaceous New Zealand
Norian 216.5 ± 2.0 203.6 ± 1.5 age Upper Triassic ICS Noric Alps (Austria)
Olenekian 249.5 245.9 age Triassic ICS river Olenyok (Siberia)
Oxfordian 161.2 ± 4.0 155.0 ± 4.0 age Jurassic ICS Oxford (England) d’Orbigny
Paleozoic 542.0 ± 1.0 251.0 ± 0.7 era Phanerozoic ICS old life
Pelsonian Substage Middle Triassic Germany
Phanerozoic 542.0 ± 1.0 present eon ICS visible life
Piripauan 86.5 84 age Cretaceous New Zealand
Pliensbachian 189.6 ± 1.5 183.0 ± 1.5 age Jurassic ICS Pliensbach (Germany) Oppel, 1858
Portlandian age Jurassic British Isles Isle of Portland (England)
Puercan 65.5 63.3 age Paleocene-Cretaceous North America
Purbeckian age Cretaceous-Jurassic England (obsolete) Isle of Purbeck (England)
Rhaetian 203.6 ± 1.5 199.6 ± 0.6 age Triassic ICS Rhaetian Alps (Switzerland, Austria, Italy)
Santonian 85.8 ± 0.7 83.5 ± 0.7 age Cretaceous ICS Saintes (France) Coquand, 1873
Scythian 251 ± 0.2 245 ± 1.5 Epoch Early Triassic Europe Scythia
Senonian 89.3 65.5 epoch Cretaceous unofficial Sens (France) d'Orbigny
Sevatian 206 202.3 ± 1.5 sub-age Upper Triassic Europe
Sinemurian 196.5 ± 1.0 189.6 ± 1.5 age Jurassic ICS Semur-en-Auxois (France) d'Orbigny, 1842
Smithian 251 249 Substage Lower Triassic Germany
Spathian 249 247 Substage Lower Triassic Germany
Tayloran age Cretaceous south and west of the US Taylor, Texas Murray, 1961
Teratan 89.1 86.5 age Cretaceous New Zealand
Tithonian 150.8 ± 4.0 145.5 ± 4.0 age Jurassic ICS Tithon (Greek mythology) Oppel, 1865
Toarcian 183.0 ± 1.5 175.6 ± 2.0 age Jurassic ICS Thouars (France) d'Orbigny, 1849
Triassic 251.0 ± 0.4 199.6 ± 0.6 period Mesozoic ICS threefold Von Alberti, 1834
Turonian 93.5 ± 0.8 89.3 ± 1.0 age Cretaceous ICS Tours (France) d'Orbigny, 1842
Tuvalian 222.5 217.4 ± 2.0 sub-age Upper Triassic Europe
Upper Triassic 199.6 age Triassic Germany
Urutawan 108.4 103.3 age Cretaceous New Zealand
Valanginian 140.2 ± 3.0 136.4 ± 2.0 age Cretaceous ICS Valangin (Switzerland) Desor, 1853
Vraconian sub-age Cretaceous regional
Woodbinian age Cretaceous Gulf and Atlantic coast of the US Murray, 1961

Cretaceous

The quarry pit in Mantua Township in central New Jersey has been owned by the Inversand Company for nearly a century. Credit: Rowan University.
This is a Catapleura repanda fossil from the Rowan quarry. Credit: Eric Tomenga.

"Paleogeographically, the sub-alpine terrain of southeastern France [...] was located on the proximal part of the South-European Tethys margin. It includes the Vocontian Basin, which experienced relatively high rates of subsidence during Jurassic and Early Cretaceous times, bordered by carbonate platforms limited by a net of extensional or strike–slip faults (Graciansky et al., 1999)."[6]

This phraseology connects "Early Cretaceous" with "times".

The aerial image on the right shows the quarry pit in Mantua Township in central New Jersey has been owned by the Inversand Company for nearly a century.[7]

"When an asteroid hit the Earth around 66 million years ago, it wiped out almost 75 percent of the plants and animals on the planet. All dinosaurs, except those that would eventually give rise to modern birds, were killed following the impact. Yet despite such a vast die-off, no bone bed containing a concentration of fossils as a result of this event has been found."[7]

“We don’t know yet [if it dates from the mass extinction], but we are testing this hypothesis by examining the fossils, the sediments and the chemistry.”[8]

"At the end of the Cretaceous, when the dinosaurs met their maker, the region was a shallow tropical sea full of fish, sea turtles, crocodiles, and even mosasaurs. But at some point around 66 million years ago, whether it was due to the asteroid impact or some other cause, many of the inhabitants of the sea died and were preserved in a large bone bed."[7]

On the left is a specimen of Catapleura repanda from the Rowan quarry found in the Cretaceous marl.

Late Jurassic

Paleontologists appear to prefer "Late Jurassic", "Middle Jurassic", and "Early Jurassic".[9]

Time frame references such as "We applied the method of frequency ratios (Huang et al., 1992; Mayer and Appel, 1999) to compare the observed spectral frequencies with orbital frequencies estimated for Late Jurassic time (Berger and Loutre, 1994) (Tables 1A and B)."[6] use "Late Jurassic" as a time frame, but "Upper Jurassic" as a stratigraphic frame.

Upper Jurassic

The International Commission on Stratigraphy (ICS) uses only "Upper Jurassic", "Middle Jurassic", and "Lower Jurassic" in its Global Boundary Stratotype Section and Point (GSSP) Table for all periods.[10]

Aalenian

This chart shows the magnetic polarity and ammonite zones for the Aalenian. Credit: S. Cresta, A. Goy, S. Ureta, C. Arias, E. Barrón, J. Bernad, M. L. Canales, F. García-Joral, E. García-Romero, P. R. Gialanella, J. J. Gómez, J. A. González, C. Herrero, G. Martínez, M. L. Osete, N. Perilli and J. J. Villalaín.
The image and overlain labels display the type strata for the Jurassic stage Aalenian. Credit: S. Cresta, et al.
Leioceras opalinum, Graphoceratidae; has a diameter: 4.5 cm; Lower Aalenian, Middle Jurassic; between Ohmenhausen and Reutlingen, Germany. Credit: H. Zell.

"The Global Boundary Stratotype Section and Point (GSSP) for the Aalenian Stage, formally defined at the base of bed FZ107 in the Fuentelsaz section, Castilian Branch of the Iberian Range (Spain), has been ratified by the IUGS."[11]

"The position of the boundary coincides with the first occurrence of the ammonite assemblage characterized by Leioceras opalinum and Leioceras lineatum and corresponds with a normal polarity interval correlated with the up-to-date Jurassic magnetic polarity time scale (Gradstein and others, 1994; Ogg, 1995)."[11]

The "first occurrence of the species of the genus Leioceras, evolved from Pleydellia, has been widely accepted as being the biochronological event which best enables the recognition of the basal boundary of the Aalenian Stage."[11]

On the right is a chart which indicates the ammonite zones that serve as geochrons for the Aalenian.

The second image down on the right displays the type strata for the Aalenian.

An example of Leioceras opalinum is shown on the left.

Hettangian

Psiloceras spelae tirolicum has its first occurrence at the Triassic-Jurassic boundary as geochron for the base of the Jurassic. Credit: Axel von Hillebrandt et al.
Fossil shell of Psiloceras planorbis from Germany, on display at Galerie de paléontologie et d'anatomie comparée in Paris. Credit: Hectonichus.
In this image of the Kuhjoch East section, the "Golden Spike" is at the Triassic-Jurassic boundary. Credit: Axel von Hillebrandt et al.

"Since the 1960’s, the LO (lowest occurrence) of the ammonite Psiloceras (usually the species P. planorbis [first image on the right]) has provided the working definition of the TJB (e.g., Lloyd, 1964; Maubeuge, 1964; Cope et al., 1980; Warrington et al., 1994; Gradstein et al., 2004)."[12]

"The Global Stratotype Section and Point (GSSP) defining the base of the Jurassic System Lower Jurassic Epoch and Hettangian Stage is situated at the Kuhjoch pass, Karwendel Mountains, Northern Calcareous Alps, Austria (47°29'02"N/11°31'50"E). The Triassic-Jurassic (T-J) boundary is exposed at Kuhjoch West and at Kuhjoch East [in the second image on the right], and corresponds to the first occurrence (FO) of the ammonite Psiloceras spelae tirolicum [at the top of this section]."[13]

Another FO is that of "the aragonitic foraminifer Praegubkinella turgescens"[13]

Triassic

This is an example of Psiloceras tilmanni from the Jurassic. Credit: Günter Knittel.

"What must underlie discussion of the definition of the TJB is the well accepted concept that global correlateability should be the main emphasis in the selection of a GSSP (e.g., Cowie et al., 1986; Remane et al., 1996; Gradstein et al., 2004; Walsh et al., 2004). As Remane et al. (1996: 79) expressed it, “the boundary definition will normally start from the identification of a level which can be characterised by a marker event of optimal correlation potential.” Thus, our goal here is to evaluate the possible marker events that could be used to define the TJB and to argue that an ammonite-based marker event has optimal correlation potential. This marker event is the LO of Psiloceras tilmanni in the New York Canyon section of Nevada."[12]

Upper Triassic

The chart in the Norian section describes the chronology of Upper Triassic time frames.

Rhaetian

The "extinction of Conodonta has long been seen as a terminal Triassic event, and the presence/absence of conodonts thus is routinely used to distinguish Triassic from Jurassic strata. Rhaetian conodont assemblages are of low diversity and abundance, and conodonts can be easily reworked. Therefore, the HO of Conodonta is not a reliable criterion for TJB definition. However, it is very useful to know that the presence of autochthonous Conodonta is a pre-Jurassic indicator, and this micropaleontological criterion has been widely used and accepted."[12]

Norian

The Norian chart shows the chronological positions of Upper Triassic Stages and Substages. Credit: Heinz W. Kozur & Gerhard H. Bachmann.

The chart above shows the chronological positions of Upper Triassic Stages and Substages, including the Norian.

Sevatian

The chart in the Norian section describes the chronology of Upper Triassic time frames, including the Sevatian.

Alaunian

The chart in the Norian section describes the chronology of Upper Triassic time frames, including the Alaunian.

Lacian

The chart in the Norian section describes the chronology of Upper Triassic time frames, including the Lacian or Early Norian.

Carnian

The chart in the Anisian section places the Carnian in the Late, or Upper, Triassic.

Tuvalian

The chart in the Norian section describes the chronology of Upper Triassic time frames, including the Tuvalian.

Julian

The chart in the Anisian section places the Julian in the Carnian.

Cordevolian

The chart in the Anisian section places the Cordevolian in the Carnian.

Middle Triassic

The chart in the Anisian section places the Middle Triassic below the Late Triassic.

Ladinian

The chart in the Anisian section places the Ladinian above the Asinian.

Longobardian

The chart in the Anisian section places the Longobardian above the Fassanian.

Fassanian

The chart in the Anisian section places the Fassanian at the base of the Ladinian.

Anisian

The chart indicates the time frames at and above the Anisian. Credit: Heinz W. Kozur & Gerhard H. Bachmann.

The chart above indicates the time frames at and above the Anisian.

Illyrian

The chart in the Anisian section places the Illyrian at the top of the Anisian.

Pelsonian

The chart in the Anisian section places the Pelsonian below the Illyrian.

Bithynian

The chart in the Anisian section places the Bithynian below the Pelsonian.

Aegean

This chart shows the stratigraphic position of the Aegean in the Middle Triassic. Credit: Heinz W. Kozur & Gerhard H. Bachmann.

The chart above shows the Aegean as the lowest time frame of the Anisian.

The magnetostratigraphy in the farthest right column of the above chart has black as normal polarity, white as reversed polarity, and gray for no reliable data.

Lower Triassic

The chart in the Aegean section shows the Scythian to be equivalent to the Lower Triassic.

Scythian

The chart in the Aegean section shows the Scythian to be equivalent to the Lower Triassic.

Olenekian

The chart in the Aegean section indicates that the Scythian is divided into the Olenekian above and Induan below.

Spathian

The Spathian is sometimes referred to as the Late Olenekian.[14]

Smithian

This diagram is a time-rock north-northwest to south-southeast cross section of the Lower Triassic of Idaho, Wyoming and Utah. Credit: Spencer G. Lucas, Thomas H. Goodspeed and John W. Estep.

As indicated in the above stratigraphy, the Sinbad Formation is entirely within the Smithian, or Early Olenekian.

The Smithian is sometimes referred to as the Early Olenekian.[14]

Brahmanian

The chart in the Aegean section indicates that the Brahmanian is equivalent to the Induan.

Induan

The diagram shows the Permian-Triassic boundary at the base of the Induan. Credit: Yin Hongfu, Zhang Kexin, Tong Jinnan, Yang Zunyi and Wu Shunbao.
Hindeodus parvus is now recognized as the index fossil, occurring in the Zone above the P-T boundary. Credit: Yin Hongfu, Zhang Kexin, Tong Jinnan, Yang Zunyi and Wu Shunbao.

In the diagram on the right, the Permian-Triassic boundary is at the base of the Induan limestone that occurs within the Yinkeng Formation.

"The Global Stratotype Section and Point (GSSP) of the Permian-Triassic boundary [...] is defined at the base of Hindeodus parvus horizon, i.e. the base of Bed 27c of Meishan section D, Changxing County, Zhejiang Province, South China."[15]

"Hindeodus parvus is now recognized as the index fossil" occurring in the Zone above the P-T boundary.[15]

Dienerian

The chart in the Aegean section indicates that the Dienerian is equivalent to the Gandarian.

Gandarian

The chart in the Aegean section indicates that the Gandarian is in the Brahmanian.

Gangetian

The chart in the Aegean section indicates that the Gangetian is in the Brahmanian.

Locations on Earth

Paleontologists excavate part of the bone bed that contains thousands of fossils from close to the mass dinosaur extinction. Credit: Rowan University.

At the Inversand quarry, "Located in South Jersey, the cradle of dinosaur paleontology, the quarry in Mantua Township, N.J., contains thousands of fossils dating back 65 million years."[16]

Research

Hypothesis:

  1. Each time frame or span of time in geochronology has at least one dating technique.
  2. Late Jurassic and Upper Jurassic are different time frames.

Control groups

This is an image of a Lewis rat. Credit: Charles River Laboratories.

The findings demonstrate a statistically systematic change from the status quo or the control group.

“In the design of experiments, treatments [or special properties or characteristics] are applied to [or observed in] experimental units in the treatment group(s).[17] In comparative experiments, members of the complementary group, the control group, receive either no treatment or a standard treatment.[18]"[19]

Proof of concept

Def. a “short and/or incomplete realization of a certain method or idea to demonstrate its feasibility"[20] is called a proof of concept.

Def. evidence that demonstrates that a concept is possible is called proof of concept.

The proof-of-concept structure consists of

  1. background,
  2. procedures,
  3. findings, and
  4. interpretation.[21]

See also

References

  1. Mike Walker, Sigfus Johnsen, Sune Olander Rasmussen, Trevor Popp, Jørgen-Peder Steffensen, Phil Gibbard, Wim Hoek, John Lowe, John Andrews, Svante Björck, Les C. Cwynar, Konrad Hughen, Peter Kershaw, Bernd Kromer, Thomas Litt, David J. Lowe, Takeshi Nakagawa, Rewi Newnham and Jakob Schwander (2009). "Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records". Journal of Quaternary Science 24 (1): 3-17. doi:10.1002/jqs.1227. http://www.stratigraphy.org/GSSP/Holocene.pdf. Retrieved 2015-01-18.
  2. Names from local versions of the geologic timescale can often be found in the local language. The English name is usually found by replacing the suffix in the local language for -an or -ian. Examples for "local" suffices are -en (French), -ano (Spanish), -ium (German), -aidd (Welsh) or -aan (Flemish Dutch). The English name "Norian", for example, becomes Noriano in Spanish, Norium in German, Noraidd in Welsh or Norien in French.
  3. 1 2 Time is given in Megaannum (million years BP, unless other units are given in the table. BP stands for "years before present". For ICS-units the absolute ages are taken from Gradstein et al. (2004).
  4. 1 2 3 4 5 6 This name is often still used in a chronostratigraphic or geochronologic sense, although it is now officially a lithostratigraphic unit.
  5. Menning et al. 2005
  6. 1 2 Slah Boulila, Bruno Galbrun, Linda A. Hinnov, Pierre-Yves Collin (January 2008). "High-resolution cyclostratigraphic analysis from magnetic susceptibility in a Lower Kimmeridgian (Upper Jurassic) marl–limestone succession (La Méouge, Vocontian Basin, France)". Sedimentary Geology 203 (1-2): 54-63. http://www.sciencedirect.com/science/article/pii/S0037073807002928. Retrieved 2015-01-27.
  7. 1 2 3 Josh L Davis (12 January 2016). "Paleontologists Believe They Have Discovered The First Fossil Bed From The Dinosaur Extinction Event Itself". iflscience. Retrieved 2016-01-16.
  8. Kenneth Lacovara (12 January 2016). "Paleontologists Believe They Have Discovered The First Fossil Bed From The Dinosaur Extinction Event Itself". iflscience. Retrieved 2016-01-16.
  9. Guillermo W. Rougier, John R. Wible, and James A. Hopson (22 November 1996). "Basicranial Anatomy of Priacodon fruitaensis (Triconodontidae, Mammalia) from the Late Jurassic of Colorado, and a Reappraisal of Mammaliaform Interrelationships". Novitates (3183): 38. http://digitallibrary.amnh.org/dspace/handle/2246/3639. Retrieved 2015-01-27.
  10. International Commission on Stratigraphy (27 January 2015). "GSSP Table - All Periods". ICS. Retrieved 2015-01-27.
  11. 1 2 3 S. Cresta, A. Goy, S. Ureta, C. Arias, E. Barrón, J. Bernad, M. L. Canales, F. García-Joral, E. García-Romero, P. R. Gialanella, J. J. Gómez, J. A. González, C. Herrero, G. Martínez, M. L. Osete, N. Perilli and J. J. Villalaín (September 2001). "The Global Boundary Stratotype Section and Point (GSSP) of the Toarcian-Aalenian Boundary (Lower-Middle Jurassic)". Episodes 24 (3): 166-75. http://eprints.ucm.es/16664/1/file18.pdf. Retrieved 2015-01-15.
  12. 1 2 3 Spencer G. Lucas, Jean Guex, Lawrence H. Tanner, David Taylor, Wolfram M. Kuerschner Viorel Atudorei and Annachiara Bartolini (April 2005). "Definition of the Triassic-Jurassic boundary". Albertiana 32 (4): 12-35. http://paleo.cortland.edu/Albertiana/issues/Albertiana_32.pdf#page=21. Retrieved 2015-01-21.
  13. 1 2 A V Hillebrandt, L Krystyn, W M Kürschner, N R Bonis, M Ruhl, S Richoz, M A N Schobben, M Urlichs, P R Bown, K Kment, C A McRoberts, M Simms, and A Tomãsových (September 2013). "The Global Stratotype Sections and Point (GSSP) for the base of the Jurassic System at Kuhjoch (Karwendel Mountains, Northern Calcareous Alps, Tyrol, Austria)". Episodes 36 (3): 162-98. http://www.stratigraphy.org/GSSP/Hettangian.pdf. Retrieved 2015-01-21.
  14. 1 2 Heinz W. Kozur & Gerhard H. Bachmann (April 2005). "Correlation of the Germanic Triassic with the international scale". Albertiana 32 (4): 21-35. http://paleo.cortland.edu/Albertiana/issues/Albertiana_32.pdf#page=21. Retrieved 2015-01-23.
  15. 1 2 Yin Hongfu, Zhang Kexin, Tong Jinnan, Yang Zunyi and Wu Shunbao (June 2001). [http://www.stratigraphy.org/GSSP/Induan.pdf "The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary"]. Episodes 24 (2): 102-14. http://www.stratigraphy.org/GSSP/Induan.pdf. Retrieved 2015-01-20.
  16. Michelle Bruner (January 2016). "The Rowan University Fossil Quarry". Mantua Township, N.J.: Rowan University. Retrieved 2016-01-18.
  17. Klaus Hinkelmann, Oscar Kempthorne (2008). Design and Analysis of Experiments, Volume I: Introduction to Experimental Design (2nd ed.). Wiley. ISBN 978-0-471-72756-9. http://books.google.com/?id=T3wWj2kVYZgC&printsec=frontcover.
  18. R. A. Bailey (2008). Design of comparative experiments. Cambridge University Press. ISBN 978-0-521-68357-9. http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521683579.
  19. "Treatment and control groups, In: Wikipedia". San Francisco, California: Wikimedia Foundation, Inc. May 18, 2012. Retrieved 2012-05-31.
  20. "proof of concept, In: Wiktionary". San Francisco, California: Wikimedia Foundation, Inc. November 10, 2012. Retrieved 2013-01-13.
  21. Ginger Lehrman and Ian B Hogue, Sarah Palmer, Cheryl Jennings, Celsa A Spina, Ann Wiegand, Alan L Landay, Robert W Coombs, Douglas D Richman, John W Mellors, John M Coffin, Ronald J Bosch, David M Margolis (August 13, 2005). "Depletion of latent HIV-1 infection in vivo: a proof-of-concept study". Lancet 366 (9485): 549-55. doi:10.1016/S0140-6736(05)67098-5. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1894952/. Retrieved 2012-05-09.

External links

This is a research project at http://en.wikiversity.org

Development status: this resource is experimental in nature.
Resource type: this resource is an article.
Resource type: this resource contains a lecture or lecture notes.
Subject classification: this is a Geology resource.
This article is issued from Wikiversity - version of the Thursday, February 04, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.