Gene transcriptions/Metal responsive elements

< Gene transcriptions

A metal responsive elements (MRE), or TGC boxes, may occur in the core promoter of some human DNA genes.

TGC boxes

Notation: let the symbol MT stand for metallothionein.

"The metallothionein (MT) genes provide a good example of eucaryotic promoter architecture. MT genes specify the synthesis of low-molecular-weight metal-binding proteins. They are transcriptionally regulated by the metal ions cadmium and zinc (11), glucocorticoid hormones (18), interferon (14), interleukin-1 (22), and tumor promoters (2). The metal ion regulation of MTs is conferred by a short sequence element called the metal-responsive element (MRE [21]) or TGC box (31, 34), which functions as a metal ion-dependent enhancer."[1]

Consensus sequences

"The promoter regulatory sequences are identified by homology to published GRE (21), MRE (35), and GC box (15) consensus sequences."[1]

Here "is a consensus sequence for the MREs of the rat MT-1 gene."[1] In the direction of transcription on the DNA template strand: 3'-CNNTGCRCYCGGGNC-5', where R = purine; Y = pyrimidine; and N = any nucleotide (nt).[1]

"[T]hree potential metal response elements (MREs) [overlap] the E-boxes in the repeats, (TGCACGT with TGCRCNC being the consensus sequence; 17,18)."[2]

The reproducible consensus sequence seems to be 3'-TGCRCNC-5', specifically 3'-TGC(A/G)CNC-5'.

MREs

Six MREs lie in the proximal promoter of the rat MT-1 gene upstream of the TATA box to almost -200 nts from the transcription start site.[1]

Research

Hypothesis:

  1. At least two human gene isoforms have their transcription initiated by an MRE.

Control groups

This is an image of a Lewis rat. Credit: Charles River Laboratories.

The findings demonstrate a statistically systematic change from the status quo or the control group.

“In the design of experiments, treatments [or special properties or characteristics] are applied to [or observed in] experimental units in the treatment group(s).[3] In comparative experiments, members of the complementary group, the control group, receive either no treatment or a standard treatment.[4]"[5]

Proof of concept

Def. a “short and/or incomplete realization of a certain method or idea to demonstrate its feasibility"[6] is called a proof of concept.

Def. evidence that demonstrates that a concept is possible is called proof of concept.

The proof-of-concept structure consists of

  1. background,
  2. procedures,
  3. findings, and
  4. interpretation.[7]

See also

References

  1. 1 2 3 4 5 Robert D. Andersen, Susan J. Taplitz, Sandy Wong, Greg Bristol, Bill Larkin, and Harvey R. Herschman (October 1987). "Metal-Dependent Binding of a Factor In Vivo to the Metal-Responsive Elements of the Metallothionein 1 Gene Promoter". Molecular and Cellular Biology 7 (10): 3574-81. doi:10.1128/​MCB.7.10.3574. http://mcb.asm.org/content/7/10/3574.short. Retrieved 2013-04-15.
  2. Barbara Levinson, Rebecca Conant, Rhonda Schnur, Soma Das, Seymour Packman and Jane Gitschier (1996). "A Repeated Element in the Regulatory Region of the MNK Gene and Its Deletion in A Patient With Occipital Horn Syndrome". Human Molecular Genetics 5 (11): 1737-42. doi:10.1093/hmg/5.11.1737. http://hmg.oxfordjournals.org/content/5/11/1737.full. Retrieved 2013-04-15.
  3. Klaus Hinkelmann, Oscar Kempthorne (2008). Design and Analysis of Experiments, Volume I: Introduction to Experimental Design (2nd ed.). Wiley. ISBN 978-0-471-72756-9. http://books.google.com/?id=T3wWj2kVYZgC&printsec=frontcover.
  4. R. A. Bailey (2008). Design of comparative experiments. Cambridge University Press. ISBN 978-0-521-68357-9. http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521683579.
  5. "Treatment and control groups, In: Wikipedia". San Francisco, California: Wikimedia Foundation, Inc. May 18, 2012. Retrieved 2012-05-31.
  6. "proof of concept, In: Wiktionary". San Francisco, California: Wikimedia Foundation, Inc. November 10, 2012. Retrieved 2013-01-13.
  7. Ginger Lehrman and Ian B Hogue, Sarah Palmer, Cheryl Jennings, Celsa A Spina, Ann Wiegand, Alan L Landay, Robert W Coombs, Douglas D Richman, John W Mellors, John M Coffin, Ronald J Bosch, David M Margolis (August 13, 2005). "Depletion of latent HIV-1 infection in vivo: a proof-of-concept study". Lancet 366 (9485): 549-55. doi:10.1016/S0140-6736(05)67098-5. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1894952/. Retrieved 2012-05-09.

Further reading

External links

This article is issued from Wikiversity - version of the Monday, February 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.