Electric Circuit Analysis/Mesh Analysis/Answers

< Electric Circuit Analysis < Mesh Analysis
Exercise 8: Answers

Model Answer

KVL arround abca loop:

I_1*R_1 + (I_1-I_3)*R_2 + (I_1-I_2)*R_3 = -V_s

Therefore

I_1(R_1 +R_2 + R_3) - I_2(R_3) - I_3(R_2) = -V_s   ...............   (1)


KVL arround acda loop:

 (I_2-I_1)*R_3 + (I_2-I_3)*R_4 + I_2*R_5 = V_s

Therefore

 -I_1(R_3) + I_2(R_3 +R_4 + R_5) - I_3(R_4) = V_s   ...............   (2)


KVL arround bcdb loop:

 I_3*R_6 + (I_3-I_2)*R_4 + (I_3-I_1)*R_2 = 0

Therefore

 -I_1(R_2) - I_2(R_4) + I_3(R_2 +R_4 + R_6)  = 0   ...............   (3)

Now we can create a matrix with the above equations as follows:

 \begin{bmatrix} (R_1 +R_2 + R_3) & (-R_3) & (-R_2) \\ (-R_3) & (R_3 +R_4 + R_5) & (-R_4) \\ (-R_2) & (-R_4) & (R_2 +R_4 + R_6)\end{bmatrix} . \begin{bmatrix} I_1\\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} -V_s \\ V_s \\ 0 \end{bmatrix}

The following matrix is the above with values substituted:

 A.\vec{X} = \vec{Y}\begin{bmatrix} 10220& -10 000 & -20 \\ -10 000& 30 000 & -5000 \\ -20 & -5000 & 6020 \end{bmatrix} . \begin{bmatrix} I_1\\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} -9 \\ 9  \\ 0 \end{bmatrix}


Now that we have arranged equations 1; 2 & 3 into a matrix we need to get Determinants of the General matrix, and Determinants of alterations of the general matrix as follows:

Solving determinants of:

  • Matrix A  : General matrix A from KVL equations
  • Matrix A1 : Genral Matrix A with Column 1 substituted by \vec Y.
  • Matrix A2 : Genral Matrix A with Column 2 substituted by \vec Y.
  • Matrix A3 : Genral Matrix A with Column 3 substituted by \vec Y.

As follows:

det A = 9.86 \times 10^{11}
det A1 = -857 700 000
det A2 = 11 016 000
det A3 = 6 300 000


Now we can use the solved determinants to arrive at solutions for Mesh Currents I_1; I_2 and I_3 as follows:


1. I_1 = \frac{det A1}{det A} = -0.00086968A

2. I_2 = \frac{det A2}{det A} = 0.00001117A

3. I_3 = \frac{det A3}{det A} = 0.000006388A

Now we can solve for the current through R_3 as follows:

I_{R_3} = I_1 - I_2 = -0.881mA 

The negative sign means that I_{R_3} is flowing in the direction of I_2.

This article is issued from Wikiversity - version of the Saturday, January 18, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.