Coordinate transformations

Vector Transformation in Two Dimensions

In three dimensions, the vector transformation rule is written as

 v^{'}_i = l_{ij} v_j

where \textstyle l_{ij} = \mathbf{e}^{'}_i\bullet\mathbf{e}_j = \cos(\mathbf{e}^{'}_i,\mathbf{e}_j).

In two dimensions, this transformation rule is the familiar

\begin{align} 
v^{'}_1 & = v_1 \cos\theta + v_2 \sin\theta \\ 
v^{'}_2 & = -v_1 \sin\theta + v_2 \cos\theta \\
\end{align}

In matrix form,

 \begin{bmatrix} v^{'}_1 \\ v^{'}_2 \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \\ \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}

Since we are using sines, the direction of measurement of \textstyle \theta is required. In this case, it is measured counterclockwise.

Tensor Transformation in Two Dimensions

In three dimensions, the second-order tensor transformation rule is written as

 T^{'}_{ij} = l_{ip} l_{jq} T_{pq}

where \textstyle l_{ij} = \mathbf{e}^{'}_i\bullet\mathbf{e}_j = \cos(\mathbf{e}^{'}_i,\mathbf{e}_j).

The Cauchy stress \textstyle \boldsymbol{\sigma}is a symmetric second-order tensor. In two dimensions, the transformation rule for stress is the written as

\begin{align} \sigma^{'}_{11} & = \sigma_{11} \cos^2\theta + \sigma_{22} \sin^2\theta + 2 \sigma_{12} \sin\theta\cos\theta \\ \sigma^{'}_{22} & = \sigma_{11} \sin^2\theta + \sigma_{22} \cos^2\theta - 2 \sigma_{12} \sin\theta\cos\theta  \\ \sigma^{'}_{12} & = -\sigma_{11} \sin\theta\cos\theta + \sigma_{22} \sin\theta\cos\theta + \sigma_{12}(\cos^2\theta-\sin^2\theta) \end{align}

In matrix form,

 \begin{bmatrix} \sigma^{'}_{11} \\ \sigma^{'}_{22} \\ \sigma^{'}_{12} \end{bmatrix} = \begin{bmatrix} \cos^2\theta & \sin^2\theta & 2 \sin\theta\cos\theta \\ \sin^2\theta & \cos^2\theta & - 2\sin\theta\cos\theta \\ -\sin\theta\cos\theta & \sin\theta\cos\theta & \cos^2\theta-\sin^2\theta \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix}

Since we are using sines, the direction of measurement of \textstyle \theta is required. In this case, it is measured counterclockwise.

Tensor Transformation in two Dimensions, the intrinsic approach

Let construct an orthonormal basis of the second order tensor projected in the first order tensor


E_{1}=e_1 \otimes e_1

E_{2}=e_2 \otimes e_2

E_{3}=e_3 \otimes e_3

E_{4}=\frac{1}{\sqrt{2}}(e_2 \otimes e_3 +  e_3 \otimes e_2)

E_{5}=\frac{1}{\sqrt{2}}( e_3 \otimes e_1 + e_1 \otimes e_3)

E_{6}=\frac{1}{\sqrt{2}}( e_1 \otimes e_2 + e_2 \otimes e_1)

The stress and strain tensors are now defined by :


\left \{\sigma \right \} =
\left \{
\begin{align}
\sigma_{11} \\ 
\sigma_{22} \\ 
\sigma_{33} \\ 
\sqrt{2}\sigma_{23} \\ 
\sqrt{2}\sigma_{31} \\ 
\sqrt{2}\sigma_{12} \\
\end{align}
\right \}

and


\left \{\varepsilon \right \} =
\left \{
\begin{align}
\varepsilon_{11} \\ 
\varepsilon_{22} \\ 
\varepsilon_{33} \\ 
\sqrt{2}\varepsilon_{23} \\ 
\sqrt{2}\varepsilon_{31} \\ 
\sqrt{2}\varepsilon_{12} \\
\end{align}
\right \}

Then once constructs the bound matrix in the orthonormal base  E_{i} \otimes E_{j}


\left [ \hat{R}(\theta) \right ]= 
\left [
\begin{matrix}
R_{11}^2 & R_{12}^2 & R_{13}^2 & \sqrt{2}R_{12}R_{13} & \sqrt{2}R_{11}R_{13} & \sqrt{2}R_{11}R_{12}\\
R_{21}^2 & R_{22}^2 & R_{23}^2 & \sqrt{2}R_{22}R_{23} & \sqrt{2}R_{21}R_{23} & \sqrt{2}R_{22}R_{21}\\
R_{31}^2 & R_{32}^2 & R_{33}^2 & \sqrt{2}R_{33}R_{32} & \sqrt{2}R_{33}R_{31} & \sqrt{2}R_{31}R_{32}\\
\sqrt{2}R_{21}R_{31} & \sqrt{2}R_{22}R_{32} & \sqrt{2}R_{23}R_{33} & R_{22}R_{33}+R_{23}R_{32} & R_{21}R_{33}+R_{31}R_{23} & R_{21}R_{32}+R_{31}R_{22}\\
\sqrt{2}R_{11}R_{31} & \sqrt{2}R_{12}R_{32} & \sqrt{2}R_{13}R_{33} & R_{12}R_{33}+R_{32}R_{13} & R_{11}R_{33}+R_{13}R_{31} & R_{11}R_{32}+R_{31}R_{12}\\
\sqrt{2}R_{11}R_{21} & \sqrt{2}R_{12}R_{22} & \sqrt{2}R_{13}R_{23} & R_{12}R_{23}+R_{22}R_{13} & R_{11}R_{23}+R_{21}R_{13} & R_{11}R_{22}+R_{21}R_{12}\\
\end{matrix} \right ]

with

 \left [ R(\theta) \right ] the rotation matrix in  e_{i} \otimes e_{j} base.

Example


\left [ R(\theta) \right ]= 
\left [
\begin{matrix}
1 & 0 & 0 \\
0 & cos \theta & sin \theta \\
0 & -sin \theta& cos \theta
\end{matrix} \right ]

is the rotation along the axis e_1 in the :e_i \otimes e_j base

The associated rotation in the E_i \otimes E_j base is :


\left [ \hat{R}(\theta) \right ]= 
\left [
\begin{matrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & cos^2 \theta & sin^2 \theta & \sqrt{2} sin \theta cos \theta & 0 & 0 \\
0 & sin^2 \theta & cos^2 \theta & -\sqrt{2} sin \theta cos \theta & 0 & 0 \\
0 & - \sqrt{2} sin \theta cos \theta  & \sqrt{2} sin \theta cos \theta  & cos^2 \theta - sin^2 \theta & 0 & 0\\
0 & 0 & 0 & 0 & cos \theta & -sin \theta \\
0 & 0 & 0 & 0 & sin \theta & cos \theta \\
\end{matrix} \right ]

The rotation of a second order tensor is now defined by :

 \left \{ \sigma(\theta) \right \} = {\left [ \hat{R}(\theta) \right ]}^T \left \{ \sigma \right \}

Four order tensor

The élasticity tensor C_{ijkl} in the :e_i \otimes e_j \otimes e_k \otimes e_l is defined in the  :E_i\otimes E_j by


\left [ \overline{C} \right ] = \left[\begin{align}
C_{1111} & C_{1122} &  C_{1133} & \sqrt{2}C_{1123} & \sqrt{2}C_{1131} & \sqrt{2}C_{1112} \\
C_{1122} & C_{2222} & C_{2233} & \sqrt{2}C_{2223} & \sqrt{2}C_{2231} & \sqrt{2}C_{2212} \\
C_{1133} & C_{2233} & C_{3333} & \sqrt{2}C_{3323} & \sqrt{2}C_{3331} & \sqrt{2}C_{3312} \\ 
\sqrt{2}C_{1123} &  \sqrt{2}C_{2223} &  \sqrt{2}C_{2333} & 2C_{2323} & 2C_{2331} & 2C_{2312} \\ 
\sqrt{2}C_{1131} &  \sqrt{2}C_{2231} &  \sqrt{2}C_{3331} & 2C_{2331} & 2C_{3131} & 2C_{3112} \\ 
\sqrt{2}C_{1112} &  \sqrt{2}C_{2212} &  \sqrt{2}C_{3312} & 2C_{2312} & 2C_{3112} & 2C_{1212}
\end{align}\right]

and is rotated by:


{\left [ \overline{C} (\theta) \right ]}_g = {\left [ \hat{R}(\theta) \right ]}^T \left [ \overline{C} \right ]\left [ \hat{R}(\theta) \right ]

Related Content

Introduction to Elasticity

This article is issued from Wikiversity - version of the Wednesday, February 03, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.