Continuum mechanics/Tensor algebra identities

< Continuum mechanics

Identity 1

Let \boldsymbol{A} and \boldsymbol{B} be two second order tensors. Show that


 \boldsymbol{A}:\boldsymbol{B} = (\boldsymbol{A}^T\cdot\boldsymbol{B}):\boldsymbol{\mathit{1}}~.

Proof:

Using index notation,


 \boldsymbol{A}:\boldsymbol{B} = A_{ij}~B_{ij} = A^T_{ji}~B_{ij} = A^T_{ji}~B_{ik}~\delta_{jk}
 = [\boldsymbol{A}^T\cdot\boldsymbol{B}]_{jk}~\delta_{jk}
 = (\boldsymbol{A}^T\cdot\boldsymbol{B}):\boldsymbol{\mathit{1}} ~.

Hence,


{
 \boldsymbol{A}:\boldsymbol{B} = (\boldsymbol{A}^T\cdot\boldsymbol{B}):\boldsymbol{\mathit{1}}
 \qquad \square
 }

Identity 2

Let \boldsymbol{A} be a second order tensor and let \mathbf{a} and \mathbf{b} be two vectors. Show that


 \boldsymbol{A}:(\mathbf{a}\otimes\mathbf{b}) = (\boldsymbol{A}\cdot\mathbf{b})\cdot\mathbf{a} ~.

Proof:

It is convenient to use index notation for this. We have


 \boldsymbol{A}:(\mathbf{a}\otimes\mathbf{b}) = A_{ij}~a_i~b_j = (A_{ij}~b_j)~a_i 
 = (\boldsymbol{A}\cdot\mathbf{b})\cdot\mathbf{a} ~.

Hence,


 {
 \boldsymbol{A}:(\mathbf{a}\otimes\mathbf{b}) = (\boldsymbol{A}\cdot\mathbf{b})\cdot\mathbf{a}
 \qquad \square
 }

Identity 3

Let \boldsymbol{A} and \boldsymbol{B} be two second order tensors and let \mathbf{a} and \mathbf{b} be two vectors. Show that


 (\boldsymbol{A}\cdot\mathbf{a})\cdot(\boldsymbol{B}\cdot\mathbf{b}) = (\boldsymbol{A}^T\cdot\boldsymbol{B}):(\mathbf{a}\otimes\mathbf{b}) ~.

Proof:

Using index notation,


(\boldsymbol{A}\cdot\mathbf{a})\cdot(\boldsymbol{B}\cdot\mathbf{b}) = (A_{ij}~a_j)(B_{ik}~b_k)
= (A_{ij}~B_{ik})(a_j~b_k) = (A^T_{ji}~B_{ik})(a_j~b_k) 
= (\boldsymbol{A}^T\cdot\boldsymbol{B}):(\mathbf{a}\otimes\mathbf{b}) ~.

Hence,


{
(\boldsymbol{A}\cdot\mathbf{a})\cdot(\boldsymbol{B}\cdot\mathbf{b}) = (\boldsymbol{A}^T\cdot\boldsymbol{B}):(\mathbf{a}\otimes\mathbf{b}) \qquad \square
}

Identity 4

Let \boldsymbol{A} be a second order tensors and let \mathbf{a} and \mathbf{b} be two vectors. Show that


 (\boldsymbol{A}\cdot\mathbf{a})\otimes\mathbf{b} = \boldsymbol{A}\cdot(\mathbf{a}\otimes\mathbf{b})
 \qquad
 \text{and}
 \qquad
 \mathbf{a}\otimes(\boldsymbol{A}\cdot\mathbf{b}) = [\boldsymbol{A}\cdot(\mathbf{b}\otimes\mathbf{a})]^T
 = (\mathbf{a}\otimes\mathbf{b})\cdot\boldsymbol{A}^T ~.

Proof:

For the first identity, using index notation, we have


 [(\boldsymbol{A}\cdot\mathbf{a})\otimes\mathbf{b}]_{ik} = (A_{ij}~a_j)~b_k = A_{ij}~(a_j~b_k)
 = A_{ij}~[\mathbf{a}\otimes\mathbf{b}]_{jk}
 = \boldsymbol{A}\cdot(\mathbf{a}\otimes\mathbf{b}) ~.

Hence,


 {
 (\boldsymbol{A}\cdot\mathbf{a})\otimes\mathbf{b} = \boldsymbol{A}\cdot(\mathbf{a}\otimes\mathbf{b}) \qquad \square
 }

For the second identity, we have


 [\mathbf{a}\otimes(\boldsymbol{A}\cdot\mathbf{b})]_{ij} = a_i~(A_{jk}~b_k)
= (a_i~b_k)~A_{jk} = (a_i~b_k)~A^T_{kj} 
= [(\mathbf{a}\otimes\mathbf{b})\cdot\boldsymbol{A}^T]_{ij} ~.

Therefore,


 \mathbf{a}\otimes(\boldsymbol{A}\cdot\mathbf{b}) = (\mathbf{a}\otimes\mathbf{b})\cdot\boldsymbol{A}^T ~.

Now, \mathbf{a}\otimes\mathbf{b} = [\mathbf{b}\otimes\mathbf{a}]^T and (\boldsymbol{A}\cdot\boldsymbol{B})^T = \boldsymbol{B}^T\cdot\boldsymbol{A}^T. Hence,


(\mathbf{a}\otimes\mathbf{b})\cdot\boldsymbol{A}^T = (\mathbf{b}\otimes\mathbf{a})^T\cdot\boldsymbol{A}^T = 
 [\boldsymbol{A}\cdot(\mathbf{b}\otimes\mathbf{a})]^T ~.

Therefore,


 {
 \mathbf{a}\otimes(\boldsymbol{A}\cdot\mathbf{b}) = [\boldsymbol{A}\cdot(\mathbf{b}\otimes\mathbf{a})]^T
 = (\mathbf{a}\otimes\mathbf{b})\cdot\boldsymbol{A}^T \qquad \square
 }
This article is issued from Wikiversity - version of the Tuesday, September 11, 2007. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.