Continuum mechanics/Tensor-vector identities

< Continuum mechanics

Tensor-vector identity - 1


[(\mathbf{v}\bullet\mathbf{a})(\boldsymbol{S}\bullet\mathbf{b})]\cdot\mathbf{n} = 
\mathbf{a}\cdot[\{\mathbf{v}\otimes(\boldsymbol{S}^T\bullet\mathbf{n})\}\cdot\mathbf{b}] ~.

Proof:

Using the identity  \mathbf{a}\cdot(\boldsymbol{A}^T\cdot\mathbf{b}) = \mathbf{b}\cdot(\boldsymbol{A}\cdot\mathbf{a}) we have


 \mathbf{n}\cdot[(\mathbf{v}\bullet\mathbf{a})(\boldsymbol{S}\bullet\mathbf{b})] = 
 \mathbf{b}\cdot[(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}^T\cdot\mathbf{n})] ~.

Also, using the definition  (\mathbf{u}\otimes\mathbf{v})\cdot\mathbf{a} = (\mathbf{a}\cdot\mathbf{v})\mathbf{u} we have


 (\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}^T\cdot\mathbf{n}) = [(\boldsymbol{S}^T\cdot\mathbf{n})\otimes\mathbf{v}]\cdot\mathbf{a}~.

Therefore,


 \mathbf{n}\cdot[(\mathbf{v}\bullet\mathbf{a})(\boldsymbol{S}\bullet\mathbf{b})] = 
 \mathbf{b}\cdot[\{(\boldsymbol{S}^T\cdot\mathbf{n})\otimes\mathbf{v}\}\cdot\mathbf{a}]~.

Using the identity  \mathbf{a}\cdot(\boldsymbol{A}^T\cdot\mathbf{b}) = \mathbf{b}\cdot(\boldsymbol{A}\cdot\mathbf{a}) we have


 \mathbf{b}\cdot[\{(\boldsymbol{S}^T\cdot\mathbf{n})\otimes\mathbf{v}\}\cdot\mathbf{a}] = 
 \mathbf{a}\cdot[\{(\boldsymbol{S}^T\cdot\mathbf{n})\otimes\mathbf{v}\}^T\cdot\mathbf{b}]~.

Finally, using the relation (\mathbf{u}\otimes\mathbf{v})^T = \mathbf{v}\otimes\mathbf{u}, we get


 \mathbf{a}\cdot[\{(\boldsymbol{S}^T\cdot\mathbf{n})\otimes\mathbf{v}\}^T\cdot\mathbf{b}] = 
 \mathbf{a}\cdot[\{\mathbf{v}\otimes(\boldsymbol{S}^T\cdot\mathbf{n})\}\cdot\mathbf{b}]~.

Hence,


 {
[(\mathbf{v}\bullet\mathbf{a})(\boldsymbol{S}\bullet\mathbf{b})]\cdot\mathbf{n} = 
\mathbf{a}\cdot[\{\mathbf{v}\otimes(\boldsymbol{S}^T\bullet\mathbf{n})\}\cdot\mathbf{b}]}
\qquad \qquad \qquad \square

Tensor-vector identity 2

Let \mathbf{v} be a vector field and let \boldsymbol{S} be a second-order tensor field. Let \mathbf{a} and \mathbf{b} be two arbitrary vectors. Show that


\boldsymbol{\nabla} \bullet [(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}\cdot\mathbf{b})] = 
\mathbf{a}\cdot[\{\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S} + \mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)\}\cdot\mathbf{b}] ~.

Proof:

Using the identity \boldsymbol{\nabla} \bullet (\varphi~\mathbf{u}) = \mathbf{u}\cdot\boldsymbol{\nabla} \varphi + \varphi~\boldsymbol{\nabla} \bullet \mathbf{u} we have


\boldsymbol{\nabla} \bullet [(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}\cdot\mathbf{b})] = 
(\boldsymbol{S}\cdot\mathbf{b})\cdot\boldsymbol{\nabla} (\mathbf{v}\cdot\mathbf{a}) + 
(\mathbf{v}\cdot\mathbf{a})~\boldsymbol{\nabla} \bullet (\boldsymbol{S}\cdot\mathbf{b}) ~.

From the identity \boldsymbol{\nabla} (\mathbf{u}\cdot\mathbf{v}) = \boldsymbol{\nabla}\mathbf{u}^T\cdot\boldsymbol{\nabla} \mathbf{v} + \boldsymbol{\nabla} \mathbf{v}^T\cdot\mathbf{u}, we have \boldsymbol{\nabla} (\mathbf{v}\cdot\mathbf{a}) = \boldsymbol{\nabla} \mathbf{v}^T\cdot\mathbf{a} + \boldsymbol{\nabla} \mathbf{a}^T\cdot\mathbf{v}.

Since \mathbf{a} is constant, \boldsymbol{\nabla} \mathbf{a} = 0, and we have


(\boldsymbol{S}\cdot\mathbf{b})\cdot\boldsymbol{\nabla} (\mathbf{v}\cdot\mathbf{a})= 
(\boldsymbol{S}\cdot\mathbf{b})\cdot(\boldsymbol{\nabla} \mathbf{v}^T\cdot\mathbf{a})~.

From the relation  \mathbf{a}\cdot(\boldsymbol{A}^T\cdot\mathbf{b}) = \mathbf{b}\cdot(\boldsymbol{A}\cdot\mathbf{a}) we have


(\boldsymbol{S}\cdot\mathbf{b})\cdot(\boldsymbol{\nabla} \mathbf{v}^T\cdot\mathbf{a}) = 
\mathbf{a}\cdot[\boldsymbol{\nabla} \mathbf{v}\cdot(\boldsymbol{S}\cdot\mathbf{b})] ~.

Using the relation \boldsymbol{A}\cdot(\boldsymbol{B}\cdot\mathbf{b}) = (\boldsymbol{A}\cdot\boldsymbol{B})\cdot\mathbf{b}, we get


\boldsymbol{\nabla} \mathbf{v}\cdot(\boldsymbol{S}\cdot\mathbf{b}) = (\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S})\cdot\mathbf{b} ~.

Therefore, the final form of the first term is


(\boldsymbol{S}\cdot\mathbf{b})\cdot\boldsymbol{\nabla} (\mathbf{v}\cdot\mathbf{a})= 
\mathbf{a}\cdot[(\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S})\cdot\mathbf{b}] ~.

For the second term, from the identity \boldsymbol{\nabla} \bullet (\boldsymbol{S}^T\cdot\mathbf{v}) = \boldsymbol{S}:\boldsymbol{\nabla} \mathbf{v} + \mathbf{v}\cdot(\boldsymbol{\nabla} \bullet \boldsymbol{S}) we get, \boldsymbol{\nabla} \bullet (\boldsymbol{S}\cdot\mathbf{b}) = \boldsymbol{S}^T:\boldsymbol{\nabla} \mathbf{b} + \mathbf{b}\cdot(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T).

Since \mathbf{b} is constant, \boldsymbol{\nabla} \mathbf{b} = 0, and we have


(\mathbf{v}\cdot\mathbf{a})~\boldsymbol{\nabla} \bullet (\boldsymbol{S}\cdot\mathbf{b}) = 
(\mathbf{v}\cdot\mathbf{a})~[\mathbf{b}\cdot(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)] =
\mathbf{a}\cdot[\{\mathbf{b}\cdot(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)\}~\mathbf{v}] ~.

From the definition  (\mathbf{u}\otimes\mathbf{v})\cdot\mathbf{a} = (\mathbf{a}\cdot\mathbf{v})\mathbf{u} , we get


[\mathbf{b}\cdot(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)]~\mathbf{v} = 
 [\mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)]\cdot\mathbf{b} ~.

Therefore, the final form of the second term is


(\mathbf{v}\cdot\mathbf{a})~\boldsymbol{\nabla} \bullet (\boldsymbol{S}\cdot\mathbf{b}) = 
\mathbf{a}\cdot[\mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)]\cdot\mathbf{b} ~.

Adding the two terms, we get


\boldsymbol{\nabla} \bullet [(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}\cdot\mathbf{b})] = 
\mathbf{a}\cdot[(\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S})\cdot\mathbf{b}] + 
\mathbf{a}\cdot[\mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)]\cdot\mathbf{b} ~.

Therefore,


{
\boldsymbol{\nabla} \bullet [(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}\cdot\mathbf{b})] = 
\mathbf{a}\cdot[\{\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S} + \mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)\}\cdot\mathbf{b}] }
\qquad\qquad\qquad\square
This article is issued from Wikiversity - version of the Tuesday, September 11, 2007. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.