Continuum mechanics/Stress-strain relation for thermoelasticity

< Continuum mechanics

Relation between Cauchy stress and Green strain

Show that, for thermoelastic materials, the Cauchy stress can be expressed in terms of the Green strain as


    \boldsymbol{\sigma} = \rho~\boldsymbol{F}\cdot\frac{\partial e}{\partial \boldsymbol{E}}\cdot\boldsymbol{F}^T ~.

Proof:

Recall that the Cauchy stress is given by


  \boldsymbol{\sigma} = \rho~\frac{\partial e}{\partial \boldsymbol{F}}\cdot\boldsymbol{F}^T 
  \qquad \implies \qquad
  \sigma_{ij} = \rho~\frac{\partial e}{\partial F_{ik}}F^T_{kj} 
              = \rho~\frac{\partial e}{\partial F_{ik}}F_{jk}  ~.

The Green strain \boldsymbol{E} = \boldsymbol{E}(\boldsymbol{F}) = \boldsymbol{E}(\boldsymbol{U}) and e = e(\boldsymbol{F},\eta) = e(\boldsymbol{U},\eta). Hence, using the chain rule,


  \frac{\partial e}{\partial \boldsymbol{F}} = \frac{\partial e}{\partial \boldsymbol{E}}:\frac{\partial \boldsymbol{E}}{\partial \boldsymbol{F}}
  \qquad \implies \qquad
  \frac{\partial e}{\partial F_{ik}} = \frac{\partial e}{\partial E_{lm}}~\frac{\partial E_{lm}}{\partial F_{ik}} ~.

Now,


  \boldsymbol{E} = \frac{1}{2}(\boldsymbol{F}^T\cdot\boldsymbol{F} - \boldsymbol{\mathit{1}}) 
  \qquad \implies \qquad
  E_{lm} = \frac{1}{2}(F^T_{lp}~F_{pm} - \delta_{lm}) 
         = \frac{1}{2}(F_{pl}~F_{pm} - \delta_{lm}) ~.

Taking the derivative with respect to \boldsymbol{F}, we get


  \frac{\partial \boldsymbol{E}}{\partial \boldsymbol{F}} = \frac{1}{2}\left(\frac{\partial \boldsymbol{F}^T}{\partial \boldsymbol{F}}\cdot\boldsymbol{F} +
       \boldsymbol{F}^T\cdot\frac{\partial \boldsymbol{F}}{\partial \boldsymbol{F}}\right)
  \qquad \implies \qquad
  \frac{\partial E_{lm}}{\partial F_{ik}} = \frac{1}{2}\left(\frac{\partial F_{pl}}{\partial F_{ik}}~F_{pm} +
       F_{pl}~\frac{\partial F_{pm}}{\partial F_{ik}}\right) ~.

Therefore,


  \boldsymbol{\sigma} = \frac{1}{2}~\rho~\left[\frac{\partial e}{\partial \boldsymbol{E}}:
      \left(\frac{\partial \boldsymbol{F}^T}{\partial \boldsymbol{F}}\cdot\boldsymbol{F} +
       \boldsymbol{F}^T\cdot\frac{\partial \boldsymbol{F}}{\partial \boldsymbol{F}}\right)\right]\cdot\boldsymbol{F}^T 
  \qquad \implies \qquad
  \sigma_{ij} = \frac{1}{2}~\rho~\left[\frac{\partial e}{\partial E_{lm}}
      \left(\frac{\partial F_{pl}}{\partial F_{ik}}~F_{pm} +
       F_{pl}~\frac{\partial F_{pm}}{\partial F_{ik}}\right)\right]~F_{jk} ~.

Recall,


  \frac{\partial \boldsymbol{A}}{\partial \boldsymbol{A}} \equiv \frac{\partial A_{ij}}{\partial A_{kl}} = 
  \delta_{ik}~\delta_{jl} \qquad \text{and} \qquad
  \frac{\partial \boldsymbol{A}^T}{\partial \boldsymbol{A}} \equiv \frac{\partial A_{ji}}{\partial A_{kl}} = 
  \delta_{jk}~\delta_{il} ~.

Therefore,


  \sigma_{ij} = \frac{1}{2}~\rho~\left[\frac{\partial e}{\partial E_{lm}}
      \left(\delta_{pi}~\delta_{lk}~F_{pm} +
       F_{pl}~\delta_{pi}~\delta_{mk}\right)\right]~F_{jk} 
   = \frac{1}{2}~\rho~\left[\frac{\partial e}{\partial E_{lm}}
      \left(\delta_{lk}~F_{im} +
       F_{il}~\delta_{mk}\right)\right]~F_{jk}

or,


  \sigma_{ij} = \frac{1}{2}~\rho~\left[\frac{\partial e}{\partial E_{km}}~F_{im} +
       \frac{\partial e}{\partial E_{lk}}~F_{il}\right]~F_{jk} 
  \qquad \implies \qquad
  \boldsymbol{\sigma} = \frac{1}{2}~\rho~\left[\boldsymbol{F}\cdot\left(\frac{\partial e}{\partial \boldsymbol{E}}\right)^T +
       \boldsymbol{F}\cdot\frac{\partial e}{\partial \boldsymbol{E}}\right]\cdot\boldsymbol{F}^T

or,


  \boldsymbol{\sigma} = \frac{1}{2}~\rho~\boldsymbol{F}\cdot\left[\left(\frac{\partial e}{\partial \boldsymbol{E}}\right)^T +
       \frac{\partial e}{\partial \boldsymbol{E}}\right]\cdot\boldsymbol{F}^T ~.

From the symmetry of the Cauchy stress, we have


   \boldsymbol{\sigma} = (\boldsymbol{F}\cdot\boldsymbol{A})\cdot\boldsymbol{F}^T \qquad \text{and} \qquad
   \boldsymbol{\sigma}^T = \boldsymbol{F}\cdot(\boldsymbol{F}\cdot\boldsymbol{A})^T = \boldsymbol{F}\cdot\boldsymbol{A}^T\cdot\boldsymbol{F}^T 
   \qquad \text{and} \qquad \boldsymbol{\sigma} = \boldsymbol{\sigma}^T \implies \boldsymbol{A} = \boldsymbol{A}^T ~.

Therefore,


   \frac{\partial e}{\partial \boldsymbol{E}} = \left(\frac{\partial e}{\partial \boldsymbol{E}}\right)^T

and we get


  {
  \boldsymbol{\sigma} = ~\rho~\boldsymbol{F}\cdot\frac{\partial e}{\partial \boldsymbol{E}}\cdot\boldsymbol{F}^T ~.
  }
This article is issued from Wikiversity - version of the Tuesday, September 11, 2007. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.