Continuum mechanics/Specific heats of thermoelastic materials

< Continuum mechanics

For thermoelastic materials, show that the specific heats are related by the relation


     C_p - C_v = \cfrac{1}{\rho_0}\left(\boldsymbol{S}-T~\frac{\partial \hat{\boldsymbol{S}}}{\partial T}\right):
       \frac{\partial \tilde{\boldsymbol{E}}}{\partial T} ~.

Proof:

Recall that


   C_v := \frac{\partial \hat{e}(\boldsymbol{E},T)}{\partial T} =  T~\frac{\partial \hat{\eta}}{\partial T}

and


   C_p := \frac{\partial \tilde{e}(\boldsymbol{S},T)}{\partial T} =  
       T~\frac{\partial \tilde{\eta}}{\partial T} + 
       \cfrac{1}{\rho_0}~\boldsymbol{S}:\frac{\partial \tilde{\boldsymbol{E}}}{\partial T} ~.

Therefore,


   C_p - C_v = T~\frac{\partial \tilde{\eta}}{\partial T} 
       + \cfrac{1}{\rho_0}~\boldsymbol{S}:\frac{\partial \tilde{\boldsymbol{E}}}{\partial T}  
       - T~\frac{\partial \hat{\eta}}{\partial T} ~.

Also recall that


   \eta = \hat{\eta}(\boldsymbol{E}, T) = \tilde{\eta}(\boldsymbol{S}, T) ~.

Therefore, keeping \boldsymbol{S} constant while differentiating, we have


   \frac{\partial \tilde{\eta}}{\partial T} = \frac{\partial \hat{\eta}}{\partial \boldsymbol{E}}:\frac{\partial \boldsymbol{E}}{\partial T} + 
       \frac{\partial \hat{\eta}}{\partial T} ~.

Noting that \boldsymbol{E} = \tilde{\boldsymbol{E}}(\boldsymbol{S},T), and plugging back into the equation for the difference between the two specific heats, we have


   C_p - C_v = T~\frac{\partial \hat{\eta}}{\partial \boldsymbol{E}}:\frac{\partial \tilde{\boldsymbol{E}}}{\partial T} 
       + \cfrac{1}{\rho_0}~\boldsymbol{S}:\frac{\partial \tilde{\boldsymbol{E}}}{\partial T}  ~.

Recalling that


   \frac{\partial \hat{\eta}}{\partial \boldsymbol{E}} = - \cfrac{1}{\rho_0}~\frac{\partial \hat{\boldsymbol{S}}}{\partial T}

we get


  {
    C_p - C_v = \cfrac{1}{\rho_0}\left(\boldsymbol{S} -T~\frac{\partial \hat{\boldsymbol{S}}}{\partial T}\right):
       \frac{\partial \tilde{\boldsymbol{E}}}{\partial T} ~.
  }

For thermoelastic materials, show that the specific heats can also be related by the equations


     C_p - C_v = \cfrac{1}{\rho_0}~\boldsymbol{S}:\frac{\partial \boldsymbol{E}}{\partial T} + 
       \frac{\partial \boldsymbol{E}}{\partial T}:\left(\frac{\partial^2 \psi}{\partial \boldsymbol{E}\partial\boldsymbol{E}}:
         \frac{\partial \boldsymbol{E}}{\partial T}\right) 
     = \cfrac{1}{\rho_0}~\boldsymbol{S}:\frac{\partial \boldsymbol{E}}{\partial T} + 
       \cfrac{T}{\rho_0}~
        \frac{\partial \boldsymbol{E}}{\partial T}:\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{E}}:\frac{\partial \boldsymbol{E}}{\partial T}\right)
      ~.

We can also write the above as

 
C_p - C_v = \cfrac{1}{\rho_0}~\boldsymbol{S}:\boldsymbol{\alpha}_E + 
       \cfrac{T}{\rho_0}~\boldsymbol{\alpha}_E:\boldsymbol{\mathsf{C}}:\boldsymbol{\alpha}_E

where \boldsymbol{\alpha}_E := \frac{\partial \boldsymbol{E}}{\partial T} is the thermal expansion tensor and \boldsymbol{\mathsf{C}} := \frac{\partial \boldsymbol{S}}{\partial \boldsymbol{E}} is the stiffness tensor.

Proof:

Recall that


   \boldsymbol{S} = \rho_0~\frac{\partial \psi}{\partial \boldsymbol{E}} = \rho_0~\boldsymbol{f}(\boldsymbol{E}(\boldsymbol{S},T),T)~.

Recall the chain rule which states that if


   g(u,t) = f(x(u,t), y(u,t))

then, if we keep u fixed, the partial derivative of g with respect to t is given by


  \frac{\partial g}{\partial t} = \frac{\partial f}{\partial x}~\frac{\partial x}{\partial t} + 
                   \frac{\partial f}{\partial y}~\frac{\partial y}{\partial t} ~.

In our case,


   u = \boldsymbol{S}, ~~t = T, ~~g(\boldsymbol{S}, T) = \boldsymbol{S}, ~~x(\boldsymbol{S},T) = 
   \boldsymbol{E}(\boldsymbol{S},T), ~~y(\boldsymbol{S},T) = T,~~ \text{and}~~ f = \rho_0~\boldsymbol{f}.

Hence, we have


   \boldsymbol{S} = g(\boldsymbol{S}, T) = f(\boldsymbol{E}(\boldsymbol{S},T), T) = \rho_0~\boldsymbol{f}(\boldsymbol{E}(\boldsymbol{S},T),T)~.

Taking the derivative with respect to T keeping \boldsymbol{S} constant, we have


   \frac{\partial g}{\partial T} = \frac{\partial \boldsymbol{S}}{\partial T} = 
     \rho_0~\left[\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{E}}:
     \frac{\partial \boldsymbol{E}}{\partial T} +\frac{\partial \boldsymbol{f}}{\partial T}~\frac{\partial T}{\partial T}\right]

or,


   \mathbf{0} = \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{E}}:\frac{\partial \boldsymbol{E}}{\partial T} + \frac{\partial \boldsymbol{f}}{\partial T}~.

Now,


  \boldsymbol{f} = \frac{\partial \psi}{\partial \boldsymbol{E}}
  \qquad \implies \qquad
  \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{E}} =  \frac{\partial^2 \psi}{\partial \boldsymbol{E}\partial\boldsymbol{E}}
  \quad \text{and} \quad
  \frac{\partial \boldsymbol{f}}{\partial T} =  \frac{\partial^2 \psi}{\partial T\partial\boldsymbol{E}} ~.

Therefore,


   \mathbf{0} = \frac{\partial^2 \psi}{\partial \boldsymbol{E}\partial\boldsymbol{E}}:\frac{\partial \boldsymbol{E}}{\partial T} + 
            \frac{\partial^2 \psi}{\partial T\partial\boldsymbol{E}}
          = \frac{\partial }{\partial \boldsymbol{E}}\left(\frac{\partial \psi}{\partial \boldsymbol{E}}\right):
            \frac{\partial \boldsymbol{E}}{\partial T} + 
            \frac{\partial }{\partial T}\left(\frac{\partial \psi}{\partial \boldsymbol{E}}\right) ~.

Again recall that,


   \frac{\partial \psi}{\partial \boldsymbol{E}} = \cfrac{1}{\rho_0}~\boldsymbol{S} ~.

Plugging into the above, we get


   \mathbf{0} = \frac{\partial^2 \psi}{\partial \boldsymbol{E}\partial\boldsymbol{E}}:\frac{\partial \boldsymbol{E}}{\partial T} + 
            \cfrac{1}{\rho_0}~\frac{\partial \boldsymbol{S}}{\partial T} =
       \cfrac{1}{\rho_0}~\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{E}}:\frac{\partial \boldsymbol{E}}{\partial T} + 
            \cfrac{1}{\rho_0}~\frac{\partial \boldsymbol{S}}{\partial T} ~.

Therefore, we get the following relation for \partial \boldsymbol{S}/\partial T:


   \frac{\partial \boldsymbol{S}}{\partial T} 
      = - \rho_0~\frac{\partial^2 \psi}{\partial \boldsymbol{E}\partial\boldsymbol{E}}:\frac{\partial \boldsymbol{E}}{\partial T} 
      = - \frac{\partial \boldsymbol{S}}{\partial \boldsymbol{E}}:\frac{\partial \boldsymbol{E}}{\partial T} ~.

Recall that


   C_p - C_v = \cfrac{1}{\rho_0}\left(\boldsymbol{S}-T~\frac{\partial \boldsymbol{S}}{\partial T}\right):
       \frac{\partial \boldsymbol{E}}{\partial T} ~.

Plugging in the expressions for \partial \boldsymbol{S}/\partial T we get:


   C_p - C_v = \cfrac{1}{\rho_0}
      \left(\boldsymbol{S}+T~\rho_0~\frac{\partial^2 \psi}{\partial \boldsymbol{E}\partial\boldsymbol{E}}:\frac{\partial \boldsymbol{E}}{\partial T} 
       \right): \frac{\partial \boldsymbol{E}}{\partial T} 
     = \cfrac{1}{\rho_0}
       \left(\boldsymbol{S}+T~\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{E}}:\frac{\partial \boldsymbol{E}}{\partial T}\right)
       :\frac{\partial \boldsymbol{E}}{\partial T} ~.

Therefore,


   C_p - C_v = \cfrac{1}{\rho_0}~\boldsymbol{S}:\frac{\partial \boldsymbol{E}}{\partial T} + 
      T~\left(\frac{\partial^2 \psi}{\partial \boldsymbol{E}\partial\boldsymbol{E}}:\frac{\partial \boldsymbol{E}}{\partial T} 
       \right): \frac{\partial \boldsymbol{E}}{\partial T} 
     = \cfrac{1}{\rho_0}~\boldsymbol{S}:\frac{\partial \boldsymbol{E}}{\partial T} + 
       \cfrac{T}{\rho_0}~\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{E}}:\frac{\partial \boldsymbol{E}}{\partial T}\right)
       :\frac{\partial \boldsymbol{E}}{\partial T} ~.

Using the identity  (\boldsymbol{\mathsf{A}}:\boldsymbol{B}):\boldsymbol{C} = \boldsymbol{C}:(\boldsymbol{\mathsf{A}}:\boldsymbol{B}), we have


   {
   C_p - C_v = \cfrac{1}{\rho_0}~\boldsymbol{S}:\frac{\partial \boldsymbol{E}}{\partial T} + 
      T~\frac{\partial \boldsymbol{E}}{\partial T}:\left(\frac{\partial^2 \psi}{\partial \boldsymbol{E}\partial\boldsymbol{E}}:\frac{\partial \boldsymbol{E}}{\partial T} 
       \right)
     = \cfrac{1}{\rho_0}~\boldsymbol{S}:\frac{\partial \boldsymbol{E}}{\partial T} + 
       \cfrac{T}{\rho_0}~
        \frac{\partial \boldsymbol{E}}{\partial T}:\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{E}}:\frac{\partial \boldsymbol{E}}{\partial T}\right)
        ~.
   }

Consider an isotropic thermoelastic material that has a constant coefficient of thermal expansion and which follows the Saint-Venant–Kirchhoff model, i.e,


     \boldsymbol{\alpha}_E = \alpha~\boldsymbol{\mathit{1}} \qquad\text{and}\qquad
     \boldsymbol{\mathsf{C}} = \lambda~\boldsymbol{\mathit{1}}\otimes\boldsymbol{\mathit{1}} + 2\mu~\boldsymbol{\mathsf{I}}

where \alpha is the coefficient of thermal expansion and 3~\lambda = 3~K - 2~\mu where K, \mu are the bulk and shear moduli, respectively.

Show that the specific heats related by the equation


     C_p - C_v = \cfrac{1}{\rho_0}\left[\alpha~\text{tr}{\boldsymbol{S}} + 
       9~\alpha^2~K~T\right]~.

Proof:

Recall that,

 
C_p - C_v = \cfrac{1}{\rho_0}~\boldsymbol{S}:\boldsymbol{\alpha}_E + 
       \cfrac{T}{\rho_0}~\boldsymbol{\alpha}_E:\boldsymbol{\mathsf{C}}:\boldsymbol{\alpha}_E ~.

Plugging the expressions of \boldsymbol{\alpha}_E and \boldsymbol{\mathsf{C}} into the above equation, we have

 
  \begin{align}
    C_p - C_v & = \cfrac{1}{\rho_0}~\boldsymbol{S}:(\alpha~\boldsymbol{\mathit{1}}) + 
           \cfrac{T}{\rho_0}~(\alpha~\boldsymbol{\mathit{1}}):
           (\lambda~\boldsymbol{\mathit{1}}\otimes\boldsymbol{\mathit{1}} + 2\mu~\boldsymbol{\mathsf{I}}):
           (\alpha~\boldsymbol{\mathit{1}}) \\
     & = \cfrac{\alpha}{\rho_0}~\text{tr}{\boldsymbol{S}} + 
           \cfrac{\alpha^2~T}{\rho_0}~\boldsymbol{\mathit{1}}:
           (\lambda~\boldsymbol{\mathit{1}}\otimes\boldsymbol{\mathit{1}} + 2\mu~\boldsymbol{\mathsf{I}}):
           \boldsymbol{\mathit{1}} \\
     & = \cfrac{\alpha}{\rho_0}~\text{tr}{\boldsymbol{S}} + 
           \cfrac{\alpha^2~T}{\rho_0}~\boldsymbol{\mathit{1}}:
           (\lambda~\text{tr}{\boldsymbol{\mathit{1}}}~\boldsymbol{\mathit{1}} + 2\mu~\boldsymbol{\mathit{1}})\\
     & = \cfrac{\alpha}{\rho_0}~\text{tr}{\boldsymbol{S}} + 
           \cfrac{\alpha^2~T}{\rho_0}~
           (3~\lambda~\text{tr}{\boldsymbol{\mathit{1}}} + 2\mu~\text{tr}{\boldsymbol{\mathit{1}}})\\
     & = \cfrac{\alpha}{\rho_0}~\text{tr}{\boldsymbol{S}} + 
           \cfrac{3~\alpha^2~T}{\rho_0}~
           (3~\lambda + 2\mu)\\
     & = \cfrac{\alpha~\text{tr}{\boldsymbol{S}}}{\rho_0} + 
           \cfrac{9~\alpha^2~K~T}{\rho_0}~.
  \end{align}

Therefore,


   {
   C_p - C_v = \cfrac{1}{\rho_0}\left[\alpha~\text{tr}{\boldsymbol{S}} + 
       9~\alpha^2~K~T\right]~.
   }
This article is issued from Wikiversity - version of the Tuesday, August 17, 2010. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.