Continuum mechanics/Reynolds transport theorem

< Continuum mechanics

Let \Omega(t) be a region in Euclidean space with boundary \partial \Omega (t). Let \mathbf{x}(t) be the positions of points in the region and let \mathbf{v}(\mathbf{x},t) be the velocity field in the region. Let \mathbf{n}(\mathbf{x},t) be the outward unit normal to the boundary. Let \mathbf{f}(\mathbf{x},t) be a vector field in the region (it may also be a scalar field). Show that


  \cfrac{d}{dt}\left(\int_{\Omega(t)} \mathbf{f}~\text{dV}\right) = 
     \int_{\Omega(t)} \frac{\partial \mathbf{f}}{\partial t}~\text{dV} + \int_{\partial \Omega(t)} (\mathbf{v}\cdot\mathbf{n})\mathbf{f}~\text{dA} ~.

This relation is also known as the Reynold's Transport Theorem and is a generalization of the Leibniz rule. Content of example.

Proof:

Let \Omega_0 be reference configuration of the region \Omega(t). Let the motion and the deformation gradient be given by


   \mathbf{x} = \boldsymbol{\varphi}(\mathbf{X}, t)~; \qquad\implies\qquad 
   \boldsymbol{F}(\mathbf{X},t) = \boldsymbol{\nabla}_{\circ} \boldsymbol{\varphi} ~.

Let J(\mathbf{X},t) = \det[\boldsymbol{F}(\mathbf{X},t)]. Then, integrals in the current and the reference configurations are related by


   \int_{\Omega(t)} \mathbf{f}(\mathbf{x},t)~\text{dV} = 
      \int_{\Omega_0} \mathbf{f}[\boldsymbol{\varphi}(\mathbf{X},t),t]~J(\mathbf{X},t)~\text{dV}_0 =
      \int_{\Omega_0} \hat{\mathbf{f}}(\mathbf{X},t)~J(\mathbf{X},t)~\text{dV}_0 ~.

The time derivative of an integral over a volume is defined as


  \cfrac{d}{dt}\left( \int_{\Omega(t)} \mathbf{f}(\mathbf{x},t)~\text{dV}\right) = 
    \lim_{\Delta t \rightarrow 0} \cfrac{1}{\Delta t}
     \left(\int_{\Omega(t + \Delta t)} \mathbf{f}(\mathbf{x},t+\Delta t)~\text{dV} - 
           \int_{\Omega(t)} \mathbf{f}(\mathbf{x},t)~\text{dV}\right) ~.

Converting into integrals over the reference configuration, we get


  \cfrac{d}{dt}\left( \int_{\Omega(t)} \mathbf{f}(\mathbf{x},t)~\text{dV}\right) = 
    \lim_{\Delta t \rightarrow 0} \cfrac{1}{\Delta t}
     \left(\int_{\Omega_0} \hat{\mathbf{f}}(\mathbf{X},t+\Delta t)~J(\mathbf{X},t+\Delta t)~\text{dV}_0 - 
           \int_{\Omega_0} \hat{\mathbf{f}}(\mathbf{X},t)~J(\mathbf{X},t)~\text{dV}_0\right) ~.

Since \Omega_0 is independent of time, we have


  \begin{align}
  \cfrac{d}{dt}\left( \int_{\Omega(t)} \mathbf{f}(\mathbf{x},t)~\text{dV}\right) & = 
    \int_{\Omega_0} \left[\lim_{\Delta t \rightarrow 0} \cfrac{ 
           \hat{\mathbf{f}}(\mathbf{X},t+\Delta t)~J(\mathbf{X},t+\Delta t) - 
           \hat{\mathbf{f}}(\mathbf{X},t)~J(\mathbf{X},t)}{\Delta t} \right]~\text{dV}_0 \\
    & = \int_{\Omega_0} \frac{\partial }{\partial t}[\hat{\mathbf{f}}(\mathbf{X},t)~J(\mathbf{X},t)]~\text{dV}_0 \\
    & = \int_{\Omega_0} \left(
          \frac{\partial }{\partial t}[\hat{\mathbf{f}}(\mathbf{X},t)]~J(\mathbf{X},t)+
          \hat{\mathbf{f}}(\mathbf{X},t)~\frac{\partial }{\partial t}[J(\mathbf{X},t)]\right) ~\text{dV}_0 
  \end{align}

Now, the time derivative of \det\boldsymbol{F} is given by (see Gurtin: 1981, p. 77)


   \frac{\partial J(\mathbf{X},t)}{\partial t} = \frac{\partial }{\partial t}(\det\boldsymbol{F}) = (\det\boldsymbol{F})(\boldsymbol{\nabla} \cdot \mathbf{v}) 
      = J(\mathbf{X},t)~\boldsymbol{\nabla} \cdot \mathbf{v}(\boldsymbol{\varphi}(\mathbf{X},t),t) 
      = J(\mathbf{X},t)~\boldsymbol{\nabla} \cdot \mathbf{v}(\mathbf{x},t) ~.

Therefore,


  \begin{align}
  \cfrac{d}{dt}\left( \int_{\Omega(t)} \mathbf{f}(\mathbf{x},t)~\text{dV}\right) & = 
     \int_{\Omega_0} \left(
          \frac{\partial }{\partial t}[\hat{\mathbf{f}}(\mathbf{X},t)]~J(\mathbf{X},t)+
          \hat{\mathbf{f}}(\mathbf{X},t)~J(\mathbf{X},t)~\boldsymbol{\nabla} \cdot \mathbf{v}(\mathbf{x},t)\right) ~\text{dV}_0 \\
     & = 
     \int_{\Omega_0} 
          \left(\frac{\partial }{\partial t}[\hat{\mathbf{f}}(\mathbf{X},t)]+
          \hat{\mathbf{f}}(\mathbf{X},t)~\boldsymbol{\nabla} \cdot \mathbf{v}(\mathbf{x},t)\right)~J(\mathbf{X},t) ~\text{dV}_0  \\
     & = 
     \int_{\Omega(t)} 
          \left(\dot{\mathbf{f}}(\mathbf{x},t)+
          \mathbf{f}(\mathbf{x},t)~\boldsymbol{\nabla} \cdot \mathbf{v}(\mathbf{x},t)\right)~\text{dV} 
  \end{align}

where \dot{\mathbf{f}} is the material time derivative of \mathbf{f}. Now, the material derivative is given by


  \dot{\mathbf{f}}(\mathbf{x},t) = 
    \frac{\partial \mathbf{f}(\mathbf{x},t)}{\partial t} + [\boldsymbol{\nabla} \mathbf{f}(\mathbf{x},t)]\cdot\mathbf{v}(\mathbf{x},t) ~.

Therefore,


  \cfrac{d}{dt}\left( \int_{\Omega(t)} \mathbf{f}(\mathbf{x},t)~\text{dV}\right) = 
     \int_{\Omega(t)} 
       \left(
         \frac{\partial \mathbf{f}(\mathbf{x},t)}{\partial t} + [\boldsymbol{\nabla} \mathbf{f}(\mathbf{x},t)]\cdot\mathbf{v}(\mathbf{x},t) +
         \mathbf{f}(\mathbf{x},t)~\boldsymbol{\nabla} \cdot \mathbf{v}(\mathbf{x},t)\right)~\text{dV}

or,


  \cfrac{d}{dt}\left( \int_{\Omega(t)} \mathbf{f}~\text{dV}\right) = 
     \int_{\Omega(t)} 
       \left(
         \frac{\partial \mathbf{f}}{\partial t} + \boldsymbol{\nabla} \mathbf{f}\cdot\mathbf{v} +
         \mathbf{f}~\boldsymbol{\nabla} \cdot \mathbf{v}\right)~\text{dV} ~.

Using the identity


   \boldsymbol{\nabla} \cdot (\mathbf{v}\otimes\mathbf{w}) = \mathbf{v}(\boldsymbol{\nabla} \cdot \mathbf{w}) + \boldsymbol{\nabla}\mathbf{v}\cdot\mathbf{w}

we then have


  \cfrac{d}{dt}\left( \int_{\Omega(t)} \mathbf{f}~\text{dV}\right) = 
     \int_{\Omega(t)} 
       \left(\frac{\partial \mathbf{f}}{\partial t} + \boldsymbol{\nabla} \cdot (\mathbf{f}\otimes\mathbf{v})\right)~\text{dV} ~.

Using the divergence theorem and the identity (\mathbf{a}\otimes\mathbf{b})\cdot\mathbf{n} = (\mathbf{b}\cdot\mathbf{n})\mathbf{a} we have


  {
  \cfrac{d}{dt}\left( \int_{\Omega(t)} \mathbf{f}~\text{dV}\right) = 
     \int_{\Omega(t)}\frac{\partial \mathbf{f}}{\partial t}~\text{dV} + 
     \int_{\partial \Omega(t)}(\mathbf{f}\otimes\mathbf{v})\cdot\mathbf{n}~\text{dA}
     = \int_{\Omega(t)}\frac{\partial \mathbf{f}}{\partial t}~\text{dV} + 
     \int_{\partial \Omega(t)}(\mathbf{v}\cdot\mathbf{n})\mathbf{f}~\text{dA} ~.
  }

References

  1. M.E. Gurtin. An Introduction to Continuum Mechanics. Academic Press, New York, 1981.
  2. T. Belytschko, W. K. Liu, and B. Moran. Nonlinear Finite Elements for Continua and Structures. John Wiley and Sons, Ltd., New York, 2000.
This article is issued from Wikiversity - version of the Wednesday, January 15, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.