Continuum mechanics/Relations between surface and volume integrals

< Continuum mechanics

Surface-volume integral relation 1

Let \Omega be a body and let \partial{\Omega} be its surface. Let \mathbf{n} be the normal to the surface. Let \mathbf{v} be a vector field on \Omega and let \boldsymbol{S} be a second-order tensor field on \Omega. Show that


 \int_{\partial{\Omega}} \mathbf{v}\otimes(\boldsymbol{S}^T\cdot\mathbf{n})~\text{dA} = 
 \int_{\Omega} [\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S} + \mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)]~\text{dV} ~.

Proof:

Recall the relation


\boldsymbol{\nabla} \bullet [(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}\cdot\mathbf{b})] = 
\mathbf{a}\cdot[\{\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S} + \mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)\}\cdot\mathbf{b}] ~.

Integrating over the volume, we have


\int_{\Omega} \boldsymbol{\nabla} \bullet [(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}\cdot\mathbf{b})]~\text{dV} = 
\int_{\Omega} 
 \mathbf{a}\cdot[\{\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S} + 
\mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)\}\cdot\mathbf{b}~\text{dV}~.

Since \mathbf{a} and \mathbf{b} are constant, we have


\int_{\Omega} \boldsymbol{\nabla} \bullet [(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}\cdot\mathbf{b})]~\text{dV} = 
\mathbf{a}\cdot\left[\left\{\int_{\Omega} 
[\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S} + 
\mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)]~\text{dV}\right\}\cdot\mathbf{b}\right]~.

From the divergence theorem,


\int_{\Omega} \boldsymbol{\nabla} \bullet \mathbf{u}~\text{dV} = \int_{\partial{\Omega}} \mathbf{u}\cdot\mathbf{n}~\text{dA}

we get


\int_{\Omega} \boldsymbol{\nabla} \bullet [(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}\cdot\mathbf{b})]~\text{dV} = 
\int_{\partial{\Omega}} [(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}\cdot\mathbf{b})]\cdot\mathbf{n}~\text{dA} ~.

Using the relation


[(\mathbf{v}\bullet\mathbf{a})(\boldsymbol{S}\bullet\mathbf{b})]\cdot\mathbf{n} = 
\mathbf{a}\cdot[\{\mathbf{v}\otimes(\boldsymbol{S}^T\bullet\mathbf{n})\}\cdot\mathbf{b}]

we get


\int_{\Omega} \boldsymbol{\nabla} \bullet [(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}\cdot\mathbf{b})]~\text{dV} = 
\int_{\partial{\Omega}} 
\mathbf{a}\cdot[\{\mathbf{v}\otimes(\boldsymbol{S}^T\bullet\mathbf{n})\}\cdot\mathbf{b}]~\text{dA} ~.

Since \mathbf{a} and \mathbf{b} are constant, we have


\int_{\Omega} \boldsymbol{\nabla} \bullet [(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}\cdot\mathbf{b})]~\text{dV} = 
\mathbf{a}\cdot\left[\left\{\int_{\partial{\Omega}} 
 \mathbf{v}\otimes(\boldsymbol{S}^T\bullet\mathbf{n})~\text{dA}\right\}\cdot\mathbf{b}\right] ~.

Therefore,


\mathbf{a}\cdot\left[\left\{\int_{\partial{\Omega}} 
\mathbf{v}\otimes(\boldsymbol{S}^T\bullet\mathbf{n})~\text{dA}\right\}\cdot\mathbf{b}\right]= 
\mathbf{a}\cdot\left[\left\{\int_{\Omega} 
[\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S} + 
\mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)]~\text{dV}\right\}\cdot\mathbf{b}\right]~.

Since \mathbf{a} and \mathbf{b} are arbitrary, we have


{
\int_{\partial{\Omega}} \mathbf{v}\otimes(\boldsymbol{S}^T\bullet\mathbf{n})~\text{dA} = 
\int_{\Omega} [\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S} + \mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)]~\text{dV} }
 \qquad\qquad\qquad\square

Surface-volume integral relation 2

Let \Omega be a body and let \partial{\Omega} be its surface. Let \mathbf{n} be the normal to the surface. Let \mathbf{v} be a vector field on \Omega. Show that


 \int_{\Omega} \boldsymbol{\nabla} \mathbf{v}~\text{dV} = \int_{\partial{\Omega}} \mathbf{v}\otimes\mathbf{n}~\text{dA}~.

Proof:

Recall that


\int_{\partial{\Omega}} \mathbf{v}\otimes(\boldsymbol{S}^T\cdot\mathbf{n})~\text{dA} = 
 \int_{\Omega} [\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S} + \mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)]~\text{dV}

where \boldsymbol{S} is any second-order tensor field on \Omega. Let us assume that \boldsymbol{S} = \boldsymbol{\mathit{1}}. Then we have


\int_{\partial{\Omega}} \mathbf{v}\otimes(\boldsymbol{\mathit{1}}\cdot\mathbf{n})~\text{dA} = 
 \int_{\Omega} [\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{\mathit{1}} + \mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{\mathit{1}})]~\text{dV}

Now,


\boldsymbol{\mathit{1}}\cdot\mathbf{n} = \mathbf{n} ~;~~ \boldsymbol{\nabla} \bullet \boldsymbol{\mathit{1}} = \mathbf{0} ~;~~ \boldsymbol{A}\cdot\boldsymbol{\mathit{1}} = \boldsymbol{A}

where \boldsymbol{A} is any second-order tensor. Therefore,


\int_{\partial{\Omega}} \mathbf{v}\otimes\mathbf{n}~\text{dA} = \int_{\Omega} \boldsymbol{\nabla} \mathbf{v}~\text{dV} ~.

Rearranging,


{
\int_{\Omega} \boldsymbol{\nabla} \mathbf{v}~\text{dV} = \int_{\partial{\Omega}} \mathbf{v}\otimes\mathbf{n}~\text{dA} \qquad \square
}
This article is issued from Wikiversity - version of the Tuesday, September 11, 2007. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.