Continuum mechanics/Maxwell relations for thermoelasticity

< Continuum mechanics

For thermoelastic materials, show that the following relations hold:


    \frac{\partial \psi}{\partial \boldsymbol{E}}  = \cfrac{1}{\rho_0}~\hat{\boldsymbol{S}}(\boldsymbol{E},T) ~;~~
    \frac{\partial \psi}{\partial T}  = -\hat{\eta}(\boldsymbol{E},T) ~;~~
    \frac{\partial g}{\partial \boldsymbol{S}}  = \cfrac{1}{\rho_0}~\tilde{\boldsymbol{E}}(\boldsymbol{S}, T) ~;~~
    \frac{\partial g}{\partial T}  = \tilde{\eta}(\boldsymbol{S}, T)

where \psi(\boldsymbol{E},T) is the Helmholtz free energy and g(\boldsymbol{S},T) is the Gibbs free energy.

Also show that


    \frac{\partial \hat{\boldsymbol{S}}}{\partial T} = - \rho_0~\frac{\partial \hat{\eta}}{\partial \boldsymbol{E}} 
    \qquad\text{and}\qquad
    \frac{\partial \tilde{\boldsymbol{E}}}{\partial T} = \rho_0~\frac{\partial \tilde{\eta}}{\partial \boldsymbol{S}} ~.

Proof:

Recall that


  \psi(\boldsymbol{E}, T) = e - T~\eta = \bar{e}(\boldsymbol{E}, \eta) - T~\eta ~.

and


  g(\boldsymbol{S}, T) = - e + T~\eta + \cfrac{1}{\rho_0}~\boldsymbol{S}:\boldsymbol{E} ~.

(Note that we can choose any functional dependence that we like, because the quantities e, \eta, \boldsymbol{E} are the actual quantities and not any particular functional relations).

The derivatives are


  \frac{\partial \psi}{\partial \boldsymbol{E}} = \frac{\partial \bar{e}}{\partial \boldsymbol{E}} = \cfrac{1}{\rho_0}~\boldsymbol{S}
  ~;\qquad
  \frac{\partial \psi}{\partial T} = - \eta
  ~.

and


  \frac{\partial g}{\partial \boldsymbol{S}} = \cfrac{1}{\rho_0}~\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{S}}:\boldsymbol{E} 
    = \cfrac{1}{\rho_0}~\boldsymbol{E}
  ~;\qquad
  \frac{\partial g}{\partial T} =  \eta ~.

Hence,


  {
  \frac{\partial \psi}{\partial \boldsymbol{E}}  = \cfrac{1}{\rho_0}~\hat{\boldsymbol{S}}(\boldsymbol{E},T) ~;~~
  \frac{\partial \psi}{\partial T}  = -\hat{\eta}(\boldsymbol{E},T) ~;~~
  \frac{\partial g}{\partial \boldsymbol{S}}  = \cfrac{1}{\rho_0}~\tilde{\boldsymbol{E}}(\boldsymbol{S}, T) ~;~~
  \frac{\partial g}{\partial T}  = \tilde{\eta}(\boldsymbol{S}, T) 
  }

From the above, we have


   \frac{\partial^2 \psi}{\partial T\partial\boldsymbol{E}} = \frac{\partial^2 \psi}{\partial \boldsymbol{E}\partial T} 
   \qquad\implies\qquad
   -\frac{\partial \hat{\eta}}{\partial \boldsymbol{E}} = \cfrac{1}{\rho_0}\frac{\partial \hat{\boldsymbol{S}}}{\partial T} ~.

and


   \frac{\partial^2 g}{\partial T\partial\boldsymbol{S}} = \frac{\partial^2 g}{\partial \boldsymbol{S}\partial T} 
   \qquad\implies\qquad
   \frac{\partial \tilde{\eta}}{\partial \boldsymbol{S}} = 
    \cfrac{1}{\rho_0}\frac{\partial \tilde{\boldsymbol{E}}}{\partial T} ~.

Hence,


  {
    \frac{\partial \hat{\boldsymbol{S}}}{\partial T} = - \rho_0~\frac{\partial \hat{\eta}}{\partial \boldsymbol{E}} 
    \qquad\text{and}\qquad
    \frac{\partial \tilde{\boldsymbol{E}}}{\partial T} = \rho_0~\frac{\partial \tilde{\eta}}{\partial \boldsymbol{S}} ~.
   }

For thermoelastic materials, show that the following relations hold:


     \frac{\partial \hat{e}(\boldsymbol{E},T)}{\partial T} =  T~\frac{\partial \hat{\eta}}{\partial T} = 
       -T~\frac{\partial^2 \hat{\psi}}{\partial T^2}

and


     \frac{\partial \tilde{e}(\boldsymbol{S},T)}{\partial T} =  
       T~\frac{\partial \tilde{\eta}}{\partial T} + 
       \cfrac{1}{\rho_0}~\boldsymbol{S}:\frac{\partial \tilde{\boldsymbol{E}}}{\partial T} = 
       T~\frac{\partial^2 \tilde{g}}{\partial T^2}  
       + \boldsymbol{S}:\frac{\partial^2 \tilde{g}}{\partial \boldsymbol{S}\partial T}~.

Proof:

Recall,


   \hat{\psi}(\boldsymbol{E},T) = 
   \psi = e - T~\eta = \hat{e}(\boldsymbol{E}, T) - T~\hat{\eta}(\boldsymbol{E}, T)

and


   \tilde{g}(\boldsymbol{S},T) = 
   g = - e + T~\eta + \cfrac{1}{\rho_0}~\boldsymbol{S}:\boldsymbol{E} 
             = -\tilde{e}(\boldsymbol{S}, T) + T~\tilde{\eta}(\boldsymbol{S}, T) + 
               \cfrac{1}{\rho_0}~\boldsymbol{S}:\tilde{\boldsymbol{E}}(\boldsymbol{S}, T)~.

Therefore,


   \frac{\partial \hat{e}(\boldsymbol{E},T)}{\partial T} = \frac{\partial \hat{\psi}}{\partial T}
      + \hat{\eta}(\boldsymbol{E}, T) + T~\frac{\partial \hat{\eta}}{\partial T}

and


   \frac{\partial \tilde{e}(\boldsymbol{S},T)}{\partial T} = - \frac{\partial \tilde{g}}{\partial T} 
     + \tilde{\eta}(\boldsymbol{S},T) + T~\frac{\partial \tilde{\eta}}{\partial T}
     + \cfrac{1}{\rho_0}~\boldsymbol{S}:\frac{\partial \tilde{\boldsymbol{E}}}{\partial T} ~.

Also, recall that


  \hat{\eta}(\boldsymbol{E},T)  = -\frac{\partial \hat{\psi}}{\partial T}  
  \qquad \implies \qquad
  \frac{\partial \hat{\eta}}{\partial T}  = -\frac{\partial^2 \hat{\psi}}{\partial T^2}  ~,

  \tilde{\eta}(\boldsymbol{S}, T) =  \frac{\partial \tilde{g}}{\partial T}  
  \qquad \implies \qquad
  \frac{\partial \tilde{\eta}}{\partial T} =  \frac{\partial^2 \tilde{g}}{\partial T^2}  ~,

and


  \tilde{\boldsymbol{E}}(\boldsymbol{S}, T) = \rho_0~\frac{\partial \tilde{g}}{\partial \boldsymbol{S}}
  \qquad \implies \qquad
  \frac{\partial \tilde{\boldsymbol{E}}}{\partial T} = \rho_0~\frac{\partial^2 \tilde{g}}{\partial \boldsymbol{S}\partial T}~.

Hence,


  {
  \frac{\partial \hat{e}(\boldsymbol{E},T)}{\partial T} =  T~\frac{\partial \hat{\eta}}{\partial T} = 
   -T~\frac{\partial^2 \hat{\psi}}{\partial T^2} 
  }

and


   {
   \frac{\partial \tilde{e}(\boldsymbol{S},T)}{\partial T} =  
     T~\frac{\partial \tilde{\eta}}{\partial T} + 
     \cfrac{1}{\rho_0}~\boldsymbol{S}:\frac{\partial \tilde{\boldsymbol{E}}}{\partial T} = 
     T~\frac{\partial^2 \tilde{g}}{\partial T^2}  
     + \boldsymbol{S}:\frac{\partial^2 \tilde{g}}{\partial \boldsymbol{S}\partial T}~.
   }
This article is issued from Wikiversity - version of the Tuesday, September 11, 2007. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.