Continuum mechanics/Entropy inequality

< Continuum mechanics

The Clausius-Duhem inequality can be expressed in integral form as


   \cfrac{d}{dt}\left(\int_{\Omega} \rho~\eta~\text{dV}\right) \ge
   \int_{\partial \Omega} \rho~\eta~(u_n - \mathbf{v}\cdot\mathbf{n})~\text{dA} - 
   \int_{\partial \Omega} \cfrac{\mathbf{q}\cdot\mathbf{n}}{T}~\text{dA} + 
    \int_{\Omega} \cfrac{\rho~s}{T}~\text{dV} ~.

In differential form the Clusius-Duhem inequality can be written as


     \rho~\dot{\eta} \ge - \boldsymbol{\nabla} \cdot \left(\cfrac{\mathbf{q}}{T}\right) 
        + \cfrac{\rho~s}{T} ~.

Proof:

Assume that \Omega is an arbitrary fixed control volume. Then u_n = 0 and the derivative can be taken inside the integral to give


   \int_{\Omega} \frac{\partial }{\partial t}(\rho~\eta)~\text{dV} \ge
   -\int_{\partial \Omega} \rho~\eta~(\mathbf{v}\cdot\mathbf{n})~\text{dA} - 
   \int_{\partial \Omega} \cfrac{\mathbf{q}\cdot\mathbf{n}}{T}~\text{dA} + 
    \int_{\Omega} \cfrac{\rho~s}{T}~\text{dV} ~.

Using the divergence theorem, we get


   \int_{\Omega} \frac{\partial }{\partial t}(\rho~\eta)~\text{dV} \ge
   -\int_{\Omega} \boldsymbol{\nabla} \cdot (\rho~\eta~\mathbf{v})~\text{dV} - 
    \int_{\Omega} \boldsymbol{\nabla} \cdot \left(\cfrac{\mathbf{q}}{T}\right)~\text{dV} + 
    \int_{\Omega} \cfrac{\rho~s}{T}~\text{dV} ~.

Since \Omega is arbitrary, we must have


   \frac{\partial }{\partial t}(\rho~\eta) \ge
   -\boldsymbol{\nabla} \cdot (\rho~\eta~\mathbf{v}) - 
    \boldsymbol{\nabla} \cdot \left(\cfrac{\mathbf{q}}{T}\right) + 
    \cfrac{\rho~s}{T} ~.

Expanding out


   \frac{\partial \rho}{\partial t}~\eta + \rho~\frac{\partial \eta}{\partial t}  \ge
   -\boldsymbol{\nabla} (\rho_\eta)\cdot\mathbf{v} - \rho~\eta~(\boldsymbol{\nabla} \cdot \mathbf{v}) -
    \boldsymbol{\nabla} \cdot \left(\cfrac{\mathbf{q}}{T}\right) + 
    \cfrac{\rho~s}{T}

or,


   \frac{\partial \rho}{\partial t}~\eta + \rho~\frac{\partial \eta}{\partial t}  \ge
   -\eta~\boldsymbol{\nabla} \rho\cdot\mathbf{v} - \rho~\boldsymbol{\nabla} \eta\cdot\mathbf{v} - 
    \rho~\eta~(\boldsymbol{\nabla} \cdot \mathbf{v}) -
    \boldsymbol{\nabla} \cdot \left(\cfrac{\mathbf{q}}{T}\right) + 
    \cfrac{\rho~s}{T}

or,


   \left(\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \rho\cdot\mathbf{v} + \rho~\boldsymbol{\nabla} \cdot \mathbf{v}\right)
   ~\eta +
   \rho~\left(\frac{\partial \eta}{\partial t} + \boldsymbol{\nabla} \eta\cdot\mathbf{v}\right)
   \ge -\boldsymbol{\nabla} \cdot \left(\cfrac{\mathbf{q}}{T}\right) + 
    \cfrac{\rho~s}{T} ~.

Now, the material time derivatives of \rho and \eta are given by


   \dot{\rho} = \frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \rho\cdot\mathbf{v} ~;~~
   \dot{\eta} = \frac{\partial \eta}{\partial t} + \boldsymbol{\nabla} \eta\cdot\mathbf{v} ~.

Therefore,


   \left(\dot{\rho} + \rho~\boldsymbol{\nabla} \cdot \mathbf{v}\right)~\eta +
   \rho~\dot{\eta}
   \ge -\boldsymbol{\nabla} \cdot \left(\cfrac{\mathbf{q}}{T}\right) + 
    \cfrac{\rho~s}{T} ~.

From the conservation of mass \dot{\rho} + \rho~\boldsymbol{\nabla} \cdot \mathbf{v} = 0. Hence,


   {
   \rho~\dot{\eta} \ge -\boldsymbol{\nabla} \cdot \left(\cfrac{\mathbf{q}}{T}\right) + 
    \cfrac{\rho~s}{T} ~.
   }

In terms of the specific entropy, the Clausius-Duhem inequality is written as


     \rho~\dot{\eta} \ge - \boldsymbol{\nabla} \cdot \left(\cfrac{\mathbf{q}}{T}\right) 
        + \cfrac{\rho~s}{T}

Show that the inequality can be expressed in terms of the internal energy as


     \rho~(\dot{e} - T~\dot{\eta}) - \boldsymbol{\sigma}:\boldsymbol{\nabla}\mathbf{v} \le 
       - \cfrac{\mathbf{q}\cdot\boldsymbol{\nabla} T}{T} ~.

Proof:

Using the identity  \boldsymbol{\nabla} \cdot (\varphi~\mathbf{v}) = \varphi~\boldsymbol{\nabla} \cdot \mathbf{v} + \mathbf{v}\cdot\boldsymbol{\nabla} \varphi in the Clausius-Duhem inequality, we get


    \rho~\dot{\eta}  \ge  - \boldsymbol{\nabla} \cdot \left(\cfrac{\mathbf{q}}{T}\right) 
        + \cfrac{\rho~s}{T}  \qquad\text{or}\qquad
    \rho~\dot{\eta}  \ge - \cfrac{1}{T}~\boldsymbol{\nabla} \cdot \mathbf{q} - 
           \mathbf{q}\cdot\boldsymbol{\nabla} \left(\cfrac{1}{T}\right)
        + \cfrac{\rho~s}{T} ~.

Now, using index notation with respect to a Cartesian basis \mathbf{e}_j,


   \boldsymbol{\nabla} \left(\cfrac{1}{T}\right) = 
     \frac{\partial }{\partial x_j}\left(T^{-1}\right)~\mathbf{e}_j = 
     -\left(T^{-2}\right)~\frac{\partial T}{\partial x_j}~\mathbf{e}_j
     = -\cfrac{1}{T^2}~\boldsymbol{\nabla} T ~.

Hence,


   \rho~\dot{\eta} \ge - \cfrac{1}{T}~\boldsymbol{\nabla} \cdot \mathbf{q} + 
           \cfrac{1}{T^2}~\mathbf{q}\cdot\boldsymbol{\nabla} T
        + \cfrac{\rho~s}{T} \qquad\text{or}\qquad
   \rho~\dot{\eta} \ge -\cfrac{1}{T}\left(\boldsymbol{\nabla} \cdot \mathbf{q} - \rho~s\right) + 
           \cfrac{1}{T^2}~\mathbf{q}\cdot\boldsymbol{\nabla} T ~.

Recall the balance of energy


   \rho~\dot{e} - \boldsymbol{\sigma}:\boldsymbol{\nabla}\mathbf{v} + \boldsymbol{\nabla} \cdot \mathbf{q} - \rho~s = 0 
   \qquad \implies \qquad
   \rho~\dot{e} - \boldsymbol{\sigma}:\boldsymbol{\nabla}\mathbf{v} = - (\boldsymbol{\nabla} \cdot \mathbf{q} - \rho~s) ~.

Therefore,


   \rho~\dot{\eta} \ge \cfrac{1}{T}\left(\rho~\dot{e}-\boldsymbol{\sigma}:\boldsymbol{\nabla}\mathbf{v}\right) + 
           \cfrac{1}{T^2}~\mathbf{q}\cdot\boldsymbol{\nabla} T 
   \qquad \implies \qquad
   \rho~\dot{\eta}~T \ge \rho~\dot{e}-\boldsymbol{\sigma}:\boldsymbol{\nabla}\mathbf{v} + 
           \cfrac{\mathbf{q}\cdot\boldsymbol{\nabla} T}{T} ~.

Rearranging,


   {
     \rho~(\dot{e} - T~\dot{\eta}) - \boldsymbol{\sigma}:\boldsymbol{\nabla}\mathbf{v} \le 
       - \cfrac{\mathbf{q}\cdot\boldsymbol{\nabla} T}{T} ~.
   }
This article is issued from Wikiversity - version of the Wednesday, September 19, 2007. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.