Continuum mechanics/Clausius-Duhem inequality for thermoelasticity

< Continuum mechanics

Clausius-Duhem inequality for thermoelasticity

For thermoelastic materials, the internal energy is a function only of the deformation gradient and the temperature, i.e., e = e(\boldsymbol{F}, T). Show that, for thermoelastic materials, the Clausius-Duhem inequality


 \rho~(\dot{e} - T~\dot{\eta}) - \boldsymbol{\sigma}:\boldsymbol{\nabla}\mathbf{v} \le 
 - \cfrac{\mathbf{q}\cdot\boldsymbol{\nabla} T}{T}

can be expressed as


 \rho~\left(\frac{\partial e}{\partial \eta} - T\right)~\dot{\eta} +
  \left(\rho~\frac{\partial e}{\partial \boldsymbol{F}} - \boldsymbol{\sigma}\cdot\boldsymbol{F}^{-T}\right):\dot{\boldsymbol{F}} 
\le - \cfrac{\mathbf{q}\cdot\boldsymbol{\nabla} T}{T} ~.

Proof:

Since e = e(\boldsymbol{F}, T), we have


  \dot{e} = \frac{\partial e}{\partial \boldsymbol{F}}:\dot{\boldsymbol{F}} + \frac{\partial e}{\partial \eta}~\dot{\eta} ~.

Therefore,


 \rho~\left(\frac{\partial e}{\partial \boldsymbol{F}}:\dot{\boldsymbol{F}} + \frac{\partial e}{\partial \eta}~\dot{\eta} 
    - T~\dot{\eta}\right) - \boldsymbol{\sigma}:\boldsymbol{\nabla}\mathbf{v} \le 
     - \cfrac{\mathbf{q}\cdot\boldsymbol{\nabla} T}{T} 
 \qquad\text{or}\qquad
 \rho\left(\frac{\partial e}{\partial \eta} - T\right)~\dot{\eta} + 
 \rho~\frac{\partial e}{\partial \boldsymbol{F}}:\dot{\boldsymbol{F}}  
 - \boldsymbol{\sigma}:\boldsymbol{\nabla}\mathbf{v} \le - \cfrac{\mathbf{q}\cdot\boldsymbol{\nabla} T}{T} ~.

Now, \boldsymbol{\nabla}\mathbf{v} = \boldsymbol{l} = \dot{\boldsymbol{F}}\cdot\boldsymbol{F}^{-1}. Therefore, using the identity \boldsymbol{A}:(\boldsymbol{B}\cdot\boldsymbol{C}) = (\boldsymbol{A}\cdot\boldsymbol{C}^T):\boldsymbol{B}, we have


  \boldsymbol{\sigma}:\boldsymbol{\nabla}\mathbf{v} = \boldsymbol{\sigma}:(\dot{\boldsymbol{F}}\cdot\boldsymbol{F}^{-1})
               = (\boldsymbol{\sigma}\cdot\boldsymbol{F}^{-T}):\dot{\boldsymbol{F}} ~.

Hence,


 \rho\left(\frac{\partial e}{\partial \eta} - T\right)~\dot{\eta} + 
 \rho~\frac{\partial e}{\partial \boldsymbol{F}}:\dot{\boldsymbol{F}}  
 - (\boldsymbol{\sigma}\cdot\boldsymbol{F}^{-T}):\dot{\boldsymbol{F}} \le - \cfrac{\mathbf{q}\cdot\boldsymbol{\nabla} T}{T}

or,


 \rho~\left(\frac{\partial e}{\partial \eta} - T\right)~\dot{\eta} +
 \left(\rho~\frac{\partial e}{\partial \boldsymbol{F}} - \boldsymbol{\sigma}\cdot\boldsymbol{F}^{-T}\right):\dot{\boldsymbol{F}} 
 \le - \cfrac{\mathbf{q}\cdot\boldsymbol{\nabla} T}{T} ~.
This article is issued from Wikiversity - version of the Wednesday, July 01, 2009. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.