Continuum mechanics/Balance of energy for thermoelasticity

< Continuum mechanics

Show that, for thermoelastic materials, the balance of energy


     \rho~\dot{e} - \boldsymbol{\sigma}:\boldsymbol{\nabla}\mathbf{v} + \boldsymbol{\nabla} \cdot \mathbf{q} - \rho~s = 0 ~.

can be expressed as


     \rho~T~\dot{\eta} = - \boldsymbol{\nabla} \cdot \mathbf{q} + \rho~s ~.

Proof:

Since e = e(\boldsymbol{F}, T), we have


    \dot{e} = \frac{\partial e}{\partial \boldsymbol{F}}:\dot{\boldsymbol{F}} + \frac{\partial e}{\partial \eta}~\dot{\eta} ~.

Plug into energy equation to get


   \rho~\frac{\partial e}{\partial \boldsymbol{F}}:\dot{\boldsymbol{F}} + \rho~\frac{\partial e}{\partial \eta}~\dot{\eta}
      - \boldsymbol{\sigma}:\boldsymbol{\nabla}\mathbf{v} + \boldsymbol{\nabla} \cdot \mathbf{q} - \rho~s = 0 ~.

Recall,

 
    \frac{\partial e}{\partial \eta} = T \qquad\text{and}\qquad
    \rho~\frac{\partial e}{\partial \boldsymbol{F}} = \boldsymbol{\sigma}\cdot\boldsymbol{F}^{-T} ~.

Hence,


   (\boldsymbol{\sigma}\cdot\boldsymbol{F}^{-T}):\dot{\boldsymbol{F}} + \rho~T~\dot{\eta}
      - \boldsymbol{\sigma}:\boldsymbol{\nabla}\mathbf{v} + \boldsymbol{\nabla} \cdot \mathbf{q} - \rho~s = 0 ~.

Now, \boldsymbol{\nabla}\mathbf{v} = \boldsymbol{l} = \dot{\boldsymbol{F}}\cdot\boldsymbol{F}^{-1}. Therefore, using the identity \boldsymbol{A}:(\boldsymbol{B}\cdot\boldsymbol{C}) = (\boldsymbol{A}\cdot\boldsymbol{C}^T):\boldsymbol{B}, we have


    \boldsymbol{\sigma}:\boldsymbol{\nabla}\mathbf{v} = \boldsymbol{\sigma}:(\dot{\boldsymbol{F}}\cdot\boldsymbol{F}^{-1})
                 = (\boldsymbol{\sigma}\cdot\boldsymbol{F}^{-T}):\dot{\boldsymbol{F}} ~.

Plugging into the energy equation, we have


   \boldsymbol{\sigma}:\boldsymbol{\nabla}\mathbf{v} + \rho~T~\dot{\eta}
      - \boldsymbol{\sigma}:\boldsymbol{\nabla}\mathbf{v} + \boldsymbol{\nabla} \cdot \mathbf{q} - \rho~s = 0

or,


    {
     \rho~T~\dot{\eta} = - \boldsymbol{\nabla} \cdot \mathbf{q} + \rho~s ~.
    }

For thermoelastic materials, the specific internal energy is given by


     e = \bar{e}(\boldsymbol{E}, \eta)

where \boldsymbol{E} is the Green strain and \eta is the specific entropy. Show that


  \cfrac{d}{dt}(e - T~\eta) = - \dot{T}~\eta + \cfrac{1}{\rho_0}~\boldsymbol{S}:\dot{\boldsymbol{E}}
  \qquad\text{and}\qquad
  \cfrac{d}{dt}(e - T~\eta - \cfrac{1}{\rho_0}~\boldsymbol{S}:\boldsymbol{E}) = 
    - \dot{T}~\eta - \cfrac{1}{\rho_0}~\dot{\boldsymbol{S}}:\boldsymbol{E}

where \rho_0 is the initial density, T is the absolute temperature, \boldsymbol{S} is the 2nd Piola-Kirchhoff stress, and a dot over a quantity indicates the material time derivative.

Taking the material time derivative of the specific internal energy, we get


   \dot{e} = \frac{\partial \bar{e}}{\partial \boldsymbol{E}}:\dot{\boldsymbol{E}} + 
             \frac{\partial \bar{e}}{\partial \eta}~\dot{\eta} ~.

Now, for thermoelastic materials,


   T = \frac{\partial \bar{e}}{\partial \eta} \qquad \text{and} \qquad 
   \boldsymbol{S} = \rho_0~\frac{\partial \bar{e}}{\partial \boldsymbol{E}} ~.

Therefore,


   \dot{e} = \cfrac{1}{\rho_0}~\boldsymbol{S}:\dot{\boldsymbol{E}} + T~\dot{\eta} ~.
   \qquad \implies \qquad
   \dot{e} - T~\dot{\eta} = \cfrac{1}{\rho_0}~\boldsymbol{S}:\dot{\boldsymbol{E}} ~.

Now,


   \cfrac{d}{dt}(T~\eta) = \dot{T}~\eta + T~\dot{\eta} ~.

Therefore,


   \dot{e} - \cfrac{d}{dt}(T~\eta) + \dot{T}~\eta 
      = \cfrac{1}{\rho_0}~\boldsymbol{S}:\dot{\boldsymbol{E}} 
   \qquad \implies \qquad
   {
   \cfrac{d}{dt}(e - T~\eta) = -\dot{T}~\eta + 
       \cfrac{1}{\rho_0}~\boldsymbol{S}:\dot{\boldsymbol{E}} ~.
   }

Also,


   \cfrac{d}{dt}\left(\cfrac{1}{\rho_0}~\boldsymbol{S}:\boldsymbol{E}\right) = 
     \cfrac{1}{\rho_0}~\boldsymbol{S}:\dot{\boldsymbol{E}} + \cfrac{1}{\rho_0}~\dot{\boldsymbol{S}}:\boldsymbol{E} ~.

Hence,


   \dot{e} - \cfrac{d}{dt}(T~\eta) + \dot{T}~\eta 
      = \cfrac{d}{dt}\left(\cfrac{1}{\rho_0} \boldsymbol{S}:\boldsymbol{E}\right) - 
        \cfrac{1}{\rho_0}~\dot{\boldsymbol{S}}:\boldsymbol{E} 
   \qquad \implies \qquad
   {
   \cfrac{d}{dt}\left(e - T~\eta - \cfrac{1}{\rho_0}~\boldsymbol{S}:\boldsymbol{E}\right)
     = - \dot{T}~\eta - \cfrac{1}{\rho_0}~\dot{\boldsymbol{S}}:\boldsymbol{E} ~.
   }

For thermoelastic materials, show that the balance of energy equation


   \rho~T~\dot{\eta} = - \boldsymbol{\nabla} \cdot \mathbf{q} + \rho~s

can be expressed as either


\rho~C_v~\dot{T}  = \boldsymbol{\nabla} \cdot (\boldsymbol{\kappa}\cdot\boldsymbol{\nabla T)} + \rho~s 
     +\cfrac{\rho}{\rho_0}~T~\frac{\partial \hat{\boldsymbol{S}}}{\partial T}:\dot{\boldsymbol{E}}

or


\rho~\left(C_p - \cfrac{1}{\rho_0}~\boldsymbol{S}:\frac{\partial \tilde{\boldsymbol{E}}}{\partial T}\right)
  ~\dot{T} 
    = \boldsymbol{\nabla} \cdot (\boldsymbol{\kappa}\cdot\boldsymbol{\nabla T)} + \rho~s 
     -\cfrac{\rho}{\rho_0}~T~\frac{\partial \tilde{\boldsymbol{E}}}{\partial T}:\dot{\boldsymbol{S}}

where


C_v = \frac{\partial \hat{e}(\boldsymbol{E},T)}{\partial T} 
\qquad \text{and} \qquad
C_p = \frac{\partial \tilde{e}(\boldsymbol{S},T)}{\partial T} ~.

For the special case where there are no sources and we can ignore heat conduction (for very fast processes), the energy equation simplifies to


\rho~\left(C_p - \cfrac{1}{\rho_0}~\boldsymbol{S}:\boldsymbol{\alpha}\right)
  ~\dot{T} 
    =      -\cfrac{\rho}{\rho_0}~T~\boldsymbol{\alpha}:\dot{\boldsymbol{S}}

where \boldsymbol{\alpha} := \frac{\partial \tilde{\boldsymbol{E}}}{\partial T} is the thermal expansion tensor which has the form \boldsymbol{\alpha} = \alpha\boldsymbol{1} for isotropic materials and \alpha\, is the coefficient of thermal expansion. The above equation can be used to calculate the change of temperature in thermoelasticity.

Proof:

If the independent variables are \boldsymbol{E} and T, then


   \eta = \hat{\eta}(\boldsymbol{E}, T) \qquad \implies \qquad
   \dot{\eta} = \frac{\partial \hat{\eta}}{\partial \boldsymbol{E}}:\dot{\boldsymbol{E}} + 
       \frac{\partial \hat{\eta}}{\partial T}~\dot{T} ~.

On the other hand, if we consider \boldsymbol{S} and T to be the independent variables


   \eta = \tilde{\eta}(\boldsymbol{S}, T) \qquad \implies \qquad
   \dot{\eta} = \frac{\partial \tilde{\eta}}{\partial \boldsymbol{S}}:\dot{\boldsymbol{S}} + 
       \frac{\partial \tilde{\eta}}{\partial T}~\dot{T} ~.

Since


   \frac{\partial \hat{\eta}}{\partial \boldsymbol{E}} = -\cfrac{1}{\rho_0}~\frac{\partial \hat{\boldsymbol{S}}}{\partial T} 
   ~;~~
   \frac{\partial \hat{\eta}}{\partial T} = \cfrac{C_v}{T} ~;~~
   \frac{\partial \tilde{\eta}}{\partial \boldsymbol{S}} = 
   \cfrac{1}{\rho_0}~\frac{\partial \tilde{\boldsymbol{E}}}{\partial T} ~;~~\text{and}~~
   \frac{\partial \tilde{\eta}}{\partial T} = \cfrac{1}{T}\left(C_p - \cfrac{1}{\rho_0}
     \boldsymbol{S}:\frac{\partial \tilde{\boldsymbol{E}}}{\partial T}\right)

we have, either


   \dot{\eta} = -\cfrac{1}{\rho_0}~\frac{\partial \hat{\boldsymbol{S}}}{\partial T}:\dot{\boldsymbol{E}} + 
       \cfrac{C_v}{T}~\dot{T}

or


   \dot{\eta} = \cfrac{1}{\rho_0}~\frac{\partial \tilde{\boldsymbol{E}}}{\partial T}:\dot{\boldsymbol{S}} + 
     \cfrac{1}{T}\left(C_p - \cfrac{1}{\rho_0}
     \boldsymbol{S}:\frac{\partial \tilde{\boldsymbol{E}}}{\partial T}\right)~\dot{T} ~.

The equation for balance of energy in terms of the specific entropy is


   \rho~T~\dot{\eta} = - \boldsymbol{\nabla} \cdot \mathbf{q} + \rho~s ~.

Using the two forms of \dot{\eta}, we get two forms of the energy equation:


   -\cfrac{\rho}{\rho_0}~T~\frac{\partial \hat{\boldsymbol{S}}}{\partial T}:\dot{\boldsymbol{E}} + 
       \rho~C_v~\dot{T}  = - \boldsymbol{\nabla} \cdot \mathbf{q} + \rho~s

and


   \cfrac{\rho}{\rho_0}~T~\frac{\partial \tilde{\boldsymbol{E}}}{\partial T}:\dot{\boldsymbol{S}} + 
     \rho~C_p~\dot{T}  
    - \cfrac{\rho}{\rho_0}~\boldsymbol{S}:\frac{\partial \tilde{\boldsymbol{E}}}{\partial T}~\dot{T} 
       = - \boldsymbol{\nabla} \cdot \mathbf{q} + \rho~s ~.

From Fourier's law of heat conduction


   \mathbf{q} = - \boldsymbol{\kappa}\cdot\boldsymbol{\nabla} T ~.

Therefore,


   -\cfrac{\rho}{\rho_0}~T~\frac{\partial \hat{\boldsymbol{S}}}{\partial T}:\dot{\boldsymbol{E}} + 
       \rho~C_v~\dot{T}  = \boldsymbol{\nabla} \cdot (\boldsymbol{\kappa}\cdot\boldsymbol{\nabla T)} + \rho~s

and


   \cfrac{\rho}{\rho_0}~T~\frac{\partial \tilde{\boldsymbol{E}}}{\partial T}:\dot{\boldsymbol{S}} + 
     \rho~C_p~\dot{T}  
    - \cfrac{\rho}{\rho_0}~\boldsymbol{S}:\frac{\partial \tilde{\boldsymbol{E}}}{\partial T}~\dot{T} 
       = \boldsymbol{\nabla} \cdot (\boldsymbol{\kappa}\cdot\boldsymbol{\nabla T)} + \rho~s ~.

Rearranging,

 
  {
  \rho~C_v~\dot{T}  = \boldsymbol{\nabla} \cdot (\boldsymbol{\kappa}\cdot\boldsymbol{\nabla T)} + \rho~s 
       +\cfrac{\rho}{\rho_0}~T~\frac{\partial \hat{\boldsymbol{S}}}{\partial T}:\dot{\boldsymbol{E}} 
  }

or,


  {
  \rho~\left(C_p - \cfrac{1}{\rho_0}~\boldsymbol{S}:\frac{\partial \tilde{\boldsymbol{E}}}{\partial T}\right)
    ~\dot{T} 
      = \boldsymbol{\nabla} \cdot (\boldsymbol{\kappa}\cdot\boldsymbol{\nabla T)} + \rho~s 
       -\cfrac{\rho}{\rho_0}~T~\frac{\partial \tilde{\boldsymbol{E}}}{\partial T}:\dot{\boldsymbol{S}}  ~.
  }
This article is issued from Wikiversity - version of the Tuesday, August 17, 2010. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.